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In the supplementary document, we describe the follow-
ing parts:
• Complexity analysis;
• Explanation and Robustness of the LLTS ;
• Generalization ability on real-world captured videos;
• Efficiency analysis of our MC on in-distribution (SDSD

[11] and DID [5]) and out-of-distribution (Loli-Phone [7])
datasets;

• Hyper-parameter analysis;
• Failure case analysis.
All experiments are conducted on an NVIDIA RTX 4090
GPU using PyTorch. Notably, all critical settings are keep
consistent among different methods for fair comparison.

1. Complexity Analysis
To evaluate the training overhead and complexity of our
RetinexMCNet in contrast to state-of-the-art (SOTA) LLIE
and LLVE methods, we present their entire training process
in Fig. 1 and the complexity in Tab. 1.

As shown in Fig. 1, our two-stage training strategy (50
epochs for per-frame enhancement with low complexity, 20
epochs for temporal memory integration by activating MC)
achieves SOTA performance with moderate training cost.
As shown in Tab. 1, our RetinexMCNet attains the highest
performance on both datasets while maintaining competi-
tive complexity and inference time.

In summary, our method ensures efficiency and prac-
ticality, achieving SOTA with balanced training overhead,
complexity, and inference time.

Figure 1. Entire training process. Circle size denotes complexity.
(Same as Fig. 10 in the main paper)
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2. Explanation and Robustness of the LTS Loss

2.1. Explanation

Limited by the length of the main paper, we further explain
the symbols defined in LLTS :
• Lt: The input illumination map of low-light frame Xt;
• L̂t: The output illumination map of our network;
• Alg. 1: It calculates the relative value of each map in

the vertical direction; To simplify understanding, you can
reduce 3D to 2D by ignoring unchanged dimensions, e.g.,
(H ×W × 1, 1×W ×H) to (H × 1, 1×H). Moreover,
in practice, we randomly compute horizontal and vertical
directions for robustness;

• Î: It is the relative lightness order matrices of Lt com-
puted by Alg. 1;

• Ô: It is the relative lightness order matrices of L̂t com-
puted by Alg. 1;

• d̂: For each pixel, we take the values of the corresponding
position from Î and Ô to form a coordinate pair (̂i, ô),
which can be mapped to a 2D plane to get d̂;

• θ: The angle of d̂.
Finally, our lightness term of LLTS prevent relative level
reversal to mitigate overexposure by constraining d̂ and θ.

2.2. Robustness

As discussed in the main paper, our LLTS not only effec-
tively mitigates overexposure and preserves texture details
in our scheme (Fig. 9 in the main paper), but also can be
applied to any other intra-frame enhancement techniques to
improve their performance robustly.

Here, to verify the robustness of our dual-perspective
LLTS to different models, we apply it to three effective
models, RetinexFormer [1], BRVE [15], and StableLLVE
[14], selected from LLIE, adjacent, and random frames
methods (defined according to S in the Consistency Reg-
ularization Term in Eq. (1)). As shown in Fig. 2, LLTS ef-
fectively mitigates overexposure while simultaneously pre-
serving texture details across all models.
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Table 1. Quantitative results and complexity of LLVE and LLIE methods. The highest values are in red, the second highest values are in
blue, and the underlined one is unsupervised. The code of LAN[5] is not open yet. We report the total number of parameters (Params), the
foating point operations (FLOPs), and the inference time. Patch size: 128×128.

SDSD DIDType Methods Params (M) GFLOPs Inference Time (ms) PSNR↑ SSIM↑ PSNR↑ SSIM↑

LLIE

LLFlow[12] 39.91 409.50 53.74 24.90 0.78 25.71 0.92
SNRNet[13] 4.01 26.35 3.67 25.27 0.82 24.05 0.90

Retinexformer[1] 1.61 15.57 2.50 26.24 0.83 27.39 0.89
EvLight[8] 22.73 180.90 12.33 18.16 0.68 22.23 0.78
Zero-IG[10] 0.12 8.10 0.61 12.31 0.50 17.31 0.81

LLVE

MBLLEN[9] 2.78 114.38 118.16 21.79 0.65 24.82 0.91
SMID[3] 85.65 0.17 0.04 24.09 0.69 22.97 0.87

SDSDNet[11] 4.30 9.80 0.10 24.92 0.73 21.88 0.83
StableLLVE[14] 4.32 2.52 8.74 22.28 0.84 23.35 0.89

Chhirolya et al.[4] 8.01 23.09 57.98 23.46 0.79 22.77 0.88
LAN[5] Code is not open. 27.25 0.85 29.01 0.94

BRVE[15] 0.37 0.03 5.76 26.31 0.82 24.43 0.87
Ours 27.97 25.16 20.85 27.81 0.88 30.09 0.91

Figure 2. Visual comparison without and with LLTS . From left to
right, the columns correspond to RetinexFormer [1], BRVE [15],
and StableLLVE [14], respectively.

3. Generalization Ability

To further test the generalization ability of models, we
captured three representative low-light videos by Xiaomi
14 Pro at 23:00p.m. in Beijing, China on November 20,
2024, i.e., an extremely dark video, an outdoor video and
an indoor video. The quantitative results of consistency
and visual comparisons of state-of-the-art low-light video
enhancement (LLVE) and low-light image enhancement
(LLIE) methods are shown in Tab. 2 and Fig. 3, including
SNRNet [13], Retinexformer [1], MBLLEN [9], SDSDNet
[11], StableLLVE [14], and BRVE [15].

In the three real-world scenarios, particularly under ex-

Table 2. Quantitative results of consistency on real-shot videos.
To measure the consistency level of a video, Mean absolute bright-
ness differences (MABD) [6] is proposed as a general level of time
derivatives of brightness value on each pixel location. Here, we re-
gard its average value as the brightness flicker degree of a video
(smaller value denotes better consistency). The lowest value is in
red, the second one is in blue.

Methods Extremely Dark Outdoor Indoor
SNRNet [13] 3.354 16.744 5.969

RetinexFormer [1] 2.901 9.270 3.104
MBLLEN[9] 3.767 9.311 3.079
SDSDNet[11] 4.926 10.464 6.810

StableLLVE[14] 2.209 9.846 2.812
BRVE[15] 2.219 9.403 3.640

Ours 1.826 9.113 2.716

tremely low-light conditions, our method demonstrates sig-
nificant advantages quantitatively and qualitatively. As
shown in Fig. 3, for individual frames, unlike other meth-
ods that produce black blurs (BRVE, MBLLEN, SDSDNet
in the extremely dark) and local under-exposure (Retinex-
Former and SNRNet in the extremely dark), over-exposure
(StableLLVE in the indoor), our method delivers well-
balanced lighting and shadow effects. Across frames, our
method effectively minimizes inter-frame flickering and ar-
tifacts, ensuring superior visual consistency (Tab. 2 and Fig.
3). Thus, this demonstrates the strong generalization ability
and robustness of our model.

Please view the .mp4 files in our additional supplemen-
tary materials, which clearly illustrates the strengths and ro-
bustness of our method on both in-distribution and out-of-
distribution data.

4. Efficiency Analysis of Our MC

We explore the relationship between memory pool size, the
average utilization of stored key-value pairs, and perfor-



Figure 3. Visual comparisons of state-of-the-art LLVE and LLIE methods on real-shot videos. We all use models trained on the DID
dataset for fair comparison.

mance during model inference.
To further filter redundant information, our MC operates

as a channel-level module. For a newly generated key-value
pair Kt, Vt ∈ RC×HW , the adaptive storage mechanism
fuses high-affinity channels while selectively storing low-
affinity channels. This design enables our MC effectively
retain global key temporal features with minimal memory
consumption.

We first randomly select a video from each of the three
datasets. Next, we set the total memory size within the
range of 2C ∼ 7C where C is the number of channels in
the key and value. By default, the memory sizes for Work-
ing Memory and Long-term Memory are set at a 3:1 ratio.
The average utilization is formulated as:

Average Utilization =
The number of times all stored channels are loaded
The number of channels in stored key-value pairs

(1)

A higher average utilization indicates better inter-frame

consistency. We use PSNR to measure the performance.
A higher value indicates better intra-frame enhancement.

Conclusion. Efficiency analysis of our MC on in-
distribution datasets is presented in Tab. 3. When the total
memory size is 5C, the average utilization on both datasets
reaches the highest, indicating optimal inter-frame consis-
tency performance. However, the total size has no direct
correlation with the quality of intra-frame enhancement per-
formance (PSNR). Therefore, in practical applications, the
memory pool size should be freely selected according to the
specific intra-frame and inter-frame visual experiences.

Efficiency analysis of our MC on out-of-distribution
datasets is shown in Tab. 4. Even though this random
video sequence with 351 frames exceeds the maximum se-
quence length of the training set, our MC still achieves the
largest average utilization of 76.63% when the total size is
3C. This highlights the robustness and adaptability of our



approach in handling challenging scenarios.

Table 3. Efficiency analysis of our MC on in-distribution datasets.
We randomly select SDSD-out-pair9 with 287 frames and DID-
video77 with 100 frames.

SDSD DIDTotal Size Average Utilization Performance Average Utilization Performance

2C 50.36% 27.1155 131.3% 29.1613
3C 49.42% 26.9687 215.4% 29.1620
4C 47.74% 26.9221 126.6% 29.1622
5C 52.26% 26.9943 293.7% 29.1622
6C 43.68% 27.0191 164.9% 29.1623
7C 39.29% 26.9680 119.4% 29.1626

Table 4. Efficiency analysis of our MC on out-of-distribution
dataset. We randomly select LoliPhone-VID20210208191851
with 351 frames.

Total Size Average Utilization

2C 64.96%
3C 76.63%
4C 49.97%
5C 55.96%
6C 36.46%
7C 31.03%

5. Hyper-parameter Analysis
In our work, we introduce three hyper-parameters, i.e., α in
Eq. (3), µ in Eq. (7) and τ in Alg. 2. Next, we detail their
effects.

µ in Eq. (7). To alleviate overexposure, our LLTS con-
tains two parts: the lightness term H and the texture term
T , formulated in Eq. (6). Since the TV Loss [2] makes
the value of T too small, we introduce a scaling hyper-
parameter µ to increase T , aligning its magnitude with that
of H and ensuring a balanced contribution from both terms.
Thus, by calculation, we set µ = 2000 for all experiments.

α in Eq. (3). As defined in Ltotal, α is the weight of
LLTS , which balances the Intra-frame Regularizer LLTS

and the Fidelity Term. Here, we investigate the influence of
α on visual quality, as shown in Fig. 4.

We can observe that the texture level became higher
along with the increase of α. However, when α > 0.5,
the influence of Fidelity Term begins to weaken, reducing
the PSNR value. Therefore, based on the results, we set
α = 0.5 for all experiments.

Table 5. Effect of α. We test PSNR values on the SDSD dataset.

α 0 0.1 0.3 0.5 0.8 1
PSNR 27.71 27.73 27.77 27.81 27.80 27.78

τ in Alg. 2. It thresholds homogeneous content aver-
aging in the adaptive storage strategy. Our MC adaptively

(a) Input. (b) GT. (c) α = 0. (d) α = 0.1.

(e) α = 0.3. (f) α = 0.5. (g) α = 0.8. (h) α = 1.

Figure 4. Visual results of different settings for α in Eq. (3).

updates the memory pool based on this threshold. A high
value reduces fusion and weakens consistency, while a low
value increases fusion and lowers efficiency. The thresh-
old of 0.9 is chosen as a trade-off between efficiency and
performance.

6. Failure Case Analysis
Due to the inherent limitations of camera hardware, includ-
ing aperture constraints and limited dynamic range, certain
visual artifacts are inevitable in the output frames, such as
halos, stiff light and shadows, and vignetting.

Figure 5. Failure cases on the Loli-Phone [7] dataset.

Moreover, as pointed out by the reviewer, checkerboard
artifacts are observed in Fig. 2. We speculate that em-
ploying TV Loss (Eq. (7) in the main paper) to measure
texture complexity may inadvertently harm image struc-
ture. Future work will explore more effective alterna-
tives to assess texture complexity without introducing ar-
tifacts.
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