ROSS3D: Reconstructive Visual Instruction Tuning with 3D-Awareness - Supplementary Material -

Haochen Wang 1,2 Yucheng Zhao 3† Tiancai Wang 3* Haoqiang Fan 3 Xiangyu Zhang 4,5 Zhaoxiang Zhang 1,2*

¹NLPR, MAIS, CASIA ²UCAS ³Dexmal ⁴MEGVII Technology ⁵StepFun

{wanghaochen2022, zhaoxiang.zhang}@ia.ac.cn wtc@dexmal.com

Project Page: https://haochen-wang409.github.io/ross3d

Supplementary Material

A. More Implementation Details

A.1. Position-Aware Video Representation

To inject 3D information into vanilla video frames, this paper utilizes the representation proposed by [33]. Specifically, it adopts sinusoidal position encoding on absolute 3D coordinates (x,y,z), where the coordinate of the pixel located at (i,j) is computed using depth maps $\boldsymbol{D} \in \mathbb{R}^{H \times W}$, the extrinsic matrix $\boldsymbol{T} \in \mathbb{R}^{4 \times 4}$, and a camera intrinsic matrix $\boldsymbol{K} \in \mathbb{R}^{3 \times 3}$

$$\begin{bmatrix} x & y & z & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{D}_{ij} \cdot \begin{bmatrix} j & i & 1 \end{bmatrix} \cdot (\mathbf{K}^{-1})^{\top} & 1 \end{bmatrix} \cdot \mathbf{T}^{\top}.$$
(S1)

The encoded positions are then added with the original video features extracted by the vision backbone, *e.g.*, CLIP [20].

A.2. Training Dataset

Our **ROSS3D** is a generalist model that handles multiple tasks within a single set of learned parameters. To achieve this, **ROSS3D** is trained on a combined dataset, including 3D question answering dataset [1, 17], 3D dense captioning dataset [7], and 3D visual grounding dataset [3, 30], in the multi-task manner similar to [33].

The statistics training set is illustrated in Table S1. All data have been converted to the format of LLaVA [16]. There are 223K training samples in total.

A.3. Training Objectives

For general 3D scene understanding tasks such as 3D question answering and 3D dense captioning, we use cross-entropy loss to supervise text outputs and our proposed denoising loss to supervise visual outputs. For 3D visual

Source	# samples	# scenes	Question Length	Answer Length
SQA3D [17]	79,445	518	37.8	1.1
ScanQA [1]	26,515	562	13.7	2.4
Scan2Cap [7]	36,665	562	13.0	17.9
ScanRefer [3]	36,665	562	24.9	_
Multi3DRefer [30]	43,838	562	34.8	_

Table S1. **Detailed statistics for training data.** Average lengths for questions and answers are obtained from [33].

grounding, to locate more accurately, we only use 3D visual grounding loss introduced next.

We follow previous works [14, 26, 33, 35] and regard the visual grounding task as a classification problem for specific object proposals. Specifically, given a list of object proposals, we obtain object features for each object by aggregating visual embeddings. For each object with a bounding box b_i , we average the features of patches where more than 50% of their points lie within b_i . These object features are then added with the 3D position embedding of the center coordinate. InfoNCE [18, 22, 23, 25] is applied to optimize the similarity between the ground truth object feature and the hidden states of the special <ground> token.

A.4. Evaluation Details

For ScanRefer [3], we simply select the object proposal with the highest similarity as the prediction. For Multi3DRefer [30], we choose the objects with the highest probabilities until the cumulative probability of selecting these objects surpasses 25%. For Scan2Cap [7], we follow [13, 33] to evaluate the captioning performance by inserting special <sos> and <eos> tokens at the start and end of the prediction, respectively. Greedy sampling is utilized for both 3D dense captioning and 3D question answering tasks.

^{*}Corresponding authors. † Project lead.

γ	SQA3D	ScanQA	ScanRefer	Multi3DRefer
0.125	62.0	105.6	60.2	59.1
0.25	63.0	107.0	61.1	59.6
0.5	61.8	105.3	60.8	59.6
0.75	61.2	104.9	60.8	59.0

Table S2. **Ablations on the masking ratio** γ **.** A relatively small masking ratio performs slightly better, but overall, **Ross3D** is robust against γ .

Δt	SQA3D	ScanQA	ScanRefer	Multi3DRefer
4	63.0	107.0	61.1	59.6
2	62.6	105.4	60.9	59.2
1	61.8	104.8	61.2	59.5

Table S3. Ablations on the interval Δt . We implement our $\mathcal{L}_{\text{3D}}^{\text{corss}}$ and $\mathcal{L}_{\text{3D}}^{\text{global}}$ every Δt steps.

BEV res.	filter	SQA3D	ScanQA	ScanRefer
256×256	✓	62.3	106.5	60.9
432×432	_	61.8	104.6	60.2
432×432	\checkmark	63.0	107.0	61.1
1024×1024	\checkmark	62.7	106.5	61.4

Table S4. **Ablations on global-view reconstruction.** "Filter" indicates whether filtering out black spaces or not.

α	SQA3D	ScanQA	Scan2Cap	ScanRefer	Multi3DRef
0.5	62.3	30.9	83.4	60.8	59.3
1	63.0	30.8	81.3	61.1	59.6
5	61.9	31.0	81.1	60.9	59.2

Table S5. Ablation of the denoising loss weight α , where our **ROSS3D** is quite robust against different values of α .

B. More Experiments

B.1. More Ablation Studies

Design Choices for Cross-View Reconstruction. We ablate the masking ratio γ and the interval Δt in Table S2 and Table S3, respectively. These designs alleviate the discrepancy between training and testing. Empirically, a relatively *small masking ratio*, *i.e.*, 25%, together with an appropriate interval, *i.e.*, 4, performs the best among others. But overall, **ROSS3D** is robust against these designs.

Design Choices for Global-View Reconstruction. We ablate the BEV resolution and the filtering technique in Table S4. ROSS3D is quite robust against these designs.

Denoising Loss Weight α **.** The denoising loss is around 0.2, while the cross-entropy loss is around 1. Therefore, we simply add these two terms. We study different weights α for the denoising loss in Table S5. **ROSS3D** is robust against α .

	Method	Avg.	What	Is	How	Can	Which	Others
1	Video-3D-LLM	41.5	39.4	49.4	42.4	45.8	32.9	38.2
2	1 + vanilla	41.7	38.0	49.6	43.2	44.7	35.0	40.3
3	1 + cross-view	45.6	41.6	53.4	47.2	48.7	41.5	43.5
4	1 + global-view	47.6	45.1	54.5	50.2	48.4	43.5	42.4
5	1 + 3 + 4	51.5	52.0	56.0	53.1	47.6	47.1	48.3

Table S6. Ablations on the multiple-choice version of SQA3D [17], where we leverage Qwen2.5-72B-Instruct [27] to generate candidate options.

Method	Avg.	Count	A.Dis.	Object	Room	R.Dis.	R.Dir.	Route	Order
1 Video-3D-LLM	27.0	36.4	9.1	25.1	10.2	43.2	44.6	29.7	16.9
2 1 + vanilla	27.9	58.0	11.5	29.8	13.9	34.8	27.8	38.6	8.6
3 (1) + cross-view	30.6	57.5	24.1	22.8	17.2	41.6	34.9	30.8	15.7
4 1 + global-view	31.1	60.7	19.1	20.1	15.5	45.3	44.2	25.1	19.1
5 (1) + (3) + (4)	34.7	65.6	24.4	32.5	15.8	46.7	43.2	29.7	19.2

Table S7. **Ablations on VSI-Bench** [28] on the ScanNet [8] subset, where depth images and camera poses are incorporated.

Figure S1. Qualitative comparison with Video-3D-LLM [33]. Thanks to the proposed two 3D-aware visual pretext tasks, Ross3D has a stronger ability to interpret the overall 3D scene.

SQA3D-MCQ. In addition to conventional LM metrics, we introduce a more precise evaluation based on *LLM-generated multiple-choice QA* for SQA3D [17]. Under this new evaluation protocol demonstrated in Table S6, our results consistently demonstrate that 3D-aware visual pretext tasks are crucial.

VSI-Bench. Furthermore, in Table S7, we evaluate on VSI-Bench [28] on the ScanNet [8] subset, where depth images and camera poses are incorporated. The proposed two 3D-aware visual pre-text tasks are also effective on this advanced benchmark.

B.2. Qualitative Results

Qualitative Comparison with Video-3D-LLM [33]. We provided qualitative comparisons in Figure S1, where Ross3D has a stronger ability to interpret the overall 3D scene thanks to the proposed two 3D-aware pretext tasks.

Failure Cases. We incorporate some failure cases on SQA3D [17] in Figure S2. (1) *Mismatched perspectives (left):* The user describes the clothing rack as "behind me" but the video shows it in front of the table. (2) *Subtle linguistic cues (right):* "Twiddling my thumbs together of boredom" implies there is no computer in front of the user.

General Video Understanding.

,
Question: I am sitting on a chair facing the
table and twiddling my thumbs together of
boredom. What is the first object to my direct
left of me?
ROSS3D: Bookshelf 🛇
Ground-Truth: Window

Figure S2. Failure cases on SQA3D [33]. It struggles with mismatched perspectives (left) and subtle linguistic cues (right).

	Method	Video-MME
We evaluate ROSS3D on Video-MME [10] using	GPT4Scene _{64f}	58.4
VLMEvalKit [9], without	Video-3D-LLM _{64f}	60.1
denth images and camera	Ross3D _{64f}	60.7

poses as inputs, where Ross3D surpasses GPT4Scene [19] and Video-3D-LLM [33].

B.3. Full Comparison

We present full comparisons with previous approaches with the complete metrics for all benchmarks. Specifically, we provide Table S8 for SQA3D [17], Table S9 for ScanQA [1], Table S10 for ScanRefer [3], and Table S11 for Multi3DRefer [30], respectively. Our Ross3D significantly outperforms across all benchmarks, highlighting the effectiveness of 3D-aware visual supervision for 3D LMMs.

References

- [1] Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question answering for spatial scene understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 19129–19139, 2022. 1, 3, 4
- [2] Daigang Cai, Lichen Zhao, Jing Zhang, Lu Sheng, and Dong Xu. 3djcg: A unified framework for joint dense captioning and visual grounding on 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 16464–16473, 2022. 5
- [3] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in rgb-d scans using natural language. In European Conference on Computer Vision (ECCV), pages 202–221. Springer, 2020. 1, 3, 5
- [4] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Language conditioned spatial relation reasoning for 3d object grounding. Advances in Neural Information Processing Systems (NeurIPS), 35: 20522–20535, 2022. 5
- [5] Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan, and Tao Chen. Ll3da: Visual interactive instruction tuning for omni-3d understanding reasoning and planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 26428–26438, 2024. 4
- [6] Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Ruiyuan Lyu, Runsen Xu, Dahua Lin, and Jiangmiao Pang. Grounded 3d-llm with referent tokens. arXiv preprint arXiv:2405.10370, 2024. 4, 5

- [7] Zhenyu Chen, Ali Gholami, Matthias Nießner, and Angel X Chang. Scan2cap: Context-aware dense captioning in rgb-d scans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3193-3203, 2021. 1
- [8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5828-5839, 2017. 2
- [9] Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. In Proceedings of the 32nd ACM International Conference on Multimedia, pages 11198-11201, 2024. 3
- [10] Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 24108-24118, 2025. 3
- [11] Rao Fu, Jingyu Liu, Xilun Chen, Yixin Nie, and Wenhan Xiong. Scene-llm: Extending language model for 3d visual understanding and reasoning. arXiv preprint arXiv:2403.11401, 2024. 4
- [12] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information Processing Systems (NeurIPS), 36: 20482-20494, 2023, 4, 5
- [13] Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. arXiv preprint arXiv:2311.12871, 2023. 1, 4
- [14] Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multiview transformer for 3d visual grounding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15524–15533, 2022. 1, 5
- [15] Zhao Jin, Munawar Hayat, Yuwei Yang, Yulan Guo, and Yinjie Lei. Context-aware alignment and mutual masking for 3d-language pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10984–10994, 2023. 4, 5
- [16] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in Neural Information Processing Systems (NeurIPS), 36:34892–34916, 2023. 1
- [17] Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang. Sqa3d: Situated question answering in 3d scenes. In International Conference on Learning Representations (ICLR), 2023. 1, 2, 3, 4
- [18] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. 1

Method			Quest	ion Type			Avg. (EM)	EM-R
Wethou	What	Is	How	Can	Which	Others	71vg. (Eivi)	LIVI IV
Expert Models								
SQA3D [17]	31.6	63.8	46.0	69.5	43.9	45.3	46.6	_
3D-VisTA [35]	34.8	63.3	45.4	69.8	47.2	48.1	48.5	_
2D LLMs								
InternVL2-8B [21]	30.5	53.8	5.5	47.3	25.8	36.3	33.0	45.3
Qwen2-VL-7B [24]	29.0	59.2	33.4	50.5	44.2	43.2	40.7	46.7
LLaVA-Video-7B [31]	42.7	56.3	47.5	55.3	50.1	47.2	48.5	_
3D LMMs								
LEO [13]	_	_	_	_	_	_	50.0	52.4
Scene-LLM [11]	40.9	69.1	45.0	70.8	47.2	52.3	54.2	_
ChatScene [29]	45.4	67.0	52.0	69.5	49.9	55.0	54.6	57.5
LLaVA-3D [34]	_	_	_	_	_	_	55.6	_
Video-3D-LLM [33]	51.1	72.4	55.5	69.8	51.3	56.0	58.6	_
GPT4Scene-HDM [‡] [19]	55.9	69.9	50.8	68.7	53.3	60.4	59.4	62.4
Ross3D	56.0	79.8	60.6	70.4	55.3	60.1	63.0	65.7

Table S8. Full comparison of 3D question answering on SQA3D [17] test set. "‡" indicates this result is achieved by adopting a larger input resolution (512×490) and incorporating extra BEV inputs.

Method			BLEU-r	Metrics		Langua	ge Generation N	Metrics
Wiellod	EM	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE	METEOR	CIDEr
Expert Models								
ScanQA [1]	21.1	30.2	20.4	15.1	10.1	33.3	13.1	64.9
3D-VLP [15]	21.7	30.5	21.3	16.7	11.2	34.5	13.5	67.0
3D-VisTA [35]	-	_	_	_	13.9	35.7	_	_
2D LLMs								
InternVL2-8B [21]	16.9	20.0	9.8	5.2	2.7	32.6	14.5	55.3
Qwen2-VL-7B [24]	19.0	27.8	13.6	6.3	3.0	34.2	11.4	53.9
LLaVA-Video-7B [31]	-	39.7	26.6	9.3	3.1	44.6	17.7	88.7
3D LMMs								
3D-LLM [12]	20.5	39.3	25.2	18.4	12.0	35.7	14.5	69.4
Chat-3D [26]	_	29.1	_	_	6.4	28.5	11.9	53.2
LL3DA [5]	_	_	_	_	13.5	37.3	15.9	76.8
LEO [13]	24.5	_	_	_	11.5	39.3	16.2	80.0
Scene-LLM [11]	27.2	43.6	26.8	19.1	12.0	40.0	16.6	80.0
ChatScene [29]	21.6	43.2	29.1	20.6	14.3	41.6	18.0	87.7
Grounded 3D-LLM [6]	_	_	_	_	13.4	_	_	72.7
LLaVA-3D [34]	27.0	_	_	_	14.5	50.1	20.7	91.7
Video-3D-LLM [33]	30.1	47.1	31.7	22.8	16.2	49.0	19.8	102.1
GPT4Scene-HDM [‡] [19]	28.2	44.4	30.3	22.3	15.5	46.5	18.9	96.3
Ross3D	30.8	49.2	33.7	24.9	17.9	50.7	20.9	107.0

Table S9. Full comparison of 3D question answering on ScanQA [17] validation set. " \ddagger " indicates this result is achieved by adopting a larger input resolution (512×490) and incorporating extra BEV inputs.

- [19] Zhangyang Qi, Zhixiong Zhang, Ye Fang, Jiaqi Wang, and Hengshuang Zhao. Gpt4scene: Understand 3d scenes from videos with vision-language models. *arXiv preprint arXiv:2501.01428*, 2025. 3, 4, 5
- [20] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
- Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International Conference on Machine Learning (ICML)*, pages 8748–8763. PmLR, 2021. 1
- [21] OpenGVLab Team. InternVL2: Better than the Best—Expanding Performance Boundaries of Open-Source

Method	Unio	que	Mult	iple	Ove	rall
Wethod	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5
Expert Models						
ScanRefer [3]	76.3	53.5	32.7	21.1	41.2	27.4
3D-VLP [15]	84.2	64.6	43.5	33.4	51.4	39.5
3D-VisTA [35]	81.6	75.1	43.7	39.1	50.6	45.8
MVT [14]	77.7	66.5	31.9	25.3	40.8	33.3
3DVG-Trans [32]	81.9	60.6	39.3	28.4	47.6	34.7
ViL3DRel [4]	81.6	68.6	40.3	30.7	47.9	37.7
3DJCG [2]	83.4	64.3	41.4	30.8	49.6	37.3
M3DRef-CLIP [30]	85.3	77.2	43.8	36.8	51.9	44.7
3D LMMs						
3D-LLM [12]	_	_	_	_	30.3	_
Grounded 3D-LLM [6]	_	_	_	_	47.9	44.1
LLaVA-3D [34]	_	_	_	_	54.1	42.2
ChatScene [29]	89.6	82.5	47.8	42.9	55.5	50.2
Video-3D-LLM [33]	88.0	78.3	50.9	45.3	58.1	51.7
GPT4Scene-HDM [‡] [19]	90.3	83.7	56.4	50.9	62.6	57.0
Ross3D	87.2	77.4	54.8	48.9	61.1	54.4

Table S10. **Full comparison of 3D visual grouding** on ScanRefer [3] validation set. "‡" indicates this result is achieved by adopting a larger input resolution (512×490) and incorporating extra BEV inputs. "Unique" and "Multiple" depend on whether there are other objects of the same class as the target object.

Method	ZT w/o D	$\frac{\text{ZT w/ D}}{\text{F1}}$	ST w/o D		ST w/D		MT		ALL	
	F1		F1@0.25	F1@0.5	F1@0.25	F1@0.5	F1@0.25	F1@0.5	F1@0.25	F1@0.5
Expert Models										
3DVG-Trans [32]	87.1	45.8	_	27.5	_	16.7	_	26.5	_	25.5
M3DRef-CLIP [30]	81.8	39.4	53.5	47.8	34.6	30.6	43.6	37.9	42.8	38.4
3DJCG [2]	94.1	66.9	_	26.0	_	16.7	_	26.2	_	26.6
3D LMMs										
ChatScene [29]	90.3	62.6	82.9	75.9	49.1	44.5	45.7	41.1	57.1	52.4
Video-3D-LLM [33]	94.7	78.5	82.6	73.4	52.1	47.2	40.8	35.7	58.0	52.7
GPT4Scene-HDM [‡] [19]	97.4	84.4	85.0	77.7	59.9	55.1	48.6	44.6	64.5	59.8
Ross3D	93.6	77.8	80.2	72.1	54.7	49.6	44.3	39.1	59.6	54.3

Table S11. **Full comparison of 3D visual grouding** on Multi3DRefer [30] validation set. "‡" indicates this result is achieved by adopting a larger input resolution (512×490) and incorporating extra BEV inputs. "ZT" means zero-target. "ST" denotes single-target and "MT" is multi-target. "D" indicates distractor.

- Multimodal Models with the Progressive Scaling Strategy, 2024. 4
- [22] Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Liwei Wu, Yuxi Wang, and Zhaoxiang Zhang. Pulling target to source: A new perspective on domain adaptive semantic segmentation. *International Journal of Computer Vision*, pages 1–24, 2024. 1
- [23] Haochen Wang, Yuchao Wang, Yujun Shen, Junsong Fan, Yuxi Wang, and Zhaoxiang Zhang. Using unreliable pseudolabels for label-efficient semantic segmentation. *Interna*tional Journal of Computer Vision (IJCV), pages 1–23, 2024.
- [24] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin

- Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024. 4
- [25] Yuchao Wang, Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Guoqiang Jin, Liwei Wu, Rui Zhao, and Xinyi Le. Semi-supervised semantic segmentation using unreliable pseudo-labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4248–4257, 2022. 1
- [26] Zehan Wang, Haifeng Huang, Yang Zhao, Ziang Zhang, and Zhou Zhao. Chat-3d: Data-efficiently tuning large language model for universal dialogue of 3d scenes. *arXiv preprint arXiv:2308.08769*, 2023. 1, 4
- [27] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo

- Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024. 2
- [28] Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in space: How multimodal large language models see, remember, and recall spaces. *arXiv preprint arXiv:2412.14171*, 2024. 2
- [29] Jiawei Zhang, Chejian Xu, and Bo Li. Chatscene: Knowledge-enabled safety-critical scenario generation for autonomous vehicles. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR), pages 15459–15469, 2024. 4, 5
- [30] Yiming Zhang, ZeMing Gong, and Angel X Chang. Multi3drefer: Grounding text description to multiple 3d objects. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 15225–15236, 2023. 1, 3, 5
- [31] Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Zi-wei Liu, and Chunyuan Li. Video instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024. 4
- [32] Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu. 3dvg-transformer: Relation modeling for visual grounding on point clouds. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 2928–2937, 2021. 5
- [33] Duo Zheng, Shijia Huang, and Liwei Wang. Video-3d llm: Learning position-aware video representation for 3d scene understanding. *arXiv preprint arXiv:2412.00493*, 2024. 1, 2, 3, 4, 5
- [34] Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple yet effective pathway to empowering lmms with 3d-awareness. *arXiv preprint arXiv:2409.18125*, 2024. 4, 5
- [35] Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan Huang, and Qing Li. 3d-vista: Pre-trained transformer for 3d vision and text alignment. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 2911–2921, 2023. 1, 4, 5