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Supplementary Material

A. More Implementation Details

A.1. Position-Aware Video Representation
To inject 3D information into vanilla video frames, this pa-
per utilizes the representation proposed by [33]. Specifi-
cally, it adopts sinusoidal position encoding on absolute 3D
coordinates (x, y, z), where the coordinate of the pixel lo-
cated at (i, j) is computed using depth maps D ∈ RH×W ,
the extrinsic matrix T ∈ R4×4, and a camera intrinsic ma-
trix K ∈ R3×3
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]
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]
· T⊤.

(S1)
The encoded positions are then added with the origi-
nal video features extracted by the vision backbone, e.g.,
CLIP [20].

A.2. Training Dataset
Our ROSS3D is a generalist model that handles multiple
tasks within a single set of learned parameters. To achieve
this, ROSS3D is trained on a combined dataset, including
3D question answering dataset [1, 17], 3D dense captioning
dataset [7], and 3D visual grounding dataset [3, 30], in the
multi-task manner similar to [33].

The statistics training set is illustrated in Table S1. All
data have been converted to the format of LLaVA [16].
There are 223K training samples in total.

A.3. Training Objectives
For general 3D scene understanding tasks such as 3D ques-
tion answering and 3D dense captioning, we use cross-
entropy loss to supervise text outputs and our proposed
denoising loss to supervise visual outputs. For 3D visual
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Source # samples # scenes
Question
Length

Answer
Length

SQA3D [17] 79,445 518 37.8 1.1
ScanQA [1] 26,515 562 13.7 2.4
Scan2Cap [7] 36,665 562 13.0 17.9
ScanRefer [3] 36,665 562 24.9 –
Multi3DRefer [30] 43,838 562 34.8 –

Table S1. Detailed statistics for training data. Average lengths
for questions and answers are obtained from [33].

grounding, to locate more accurately, we only use 3D vi-
sual grounding loss introduced next.

We follow previous works [14, 26, 33, 35] and regard the
visual grounding task as a classification problem for specific
object proposals. Specifically, given a list of object propos-
als, we obtain object features for each object by aggregating
visual embeddings. For each object with a bounding box bi,
we average the features of patches where more than 50%
of their points lie within bi. These object features are then
added with the 3D position embedding of the center coor-
dinate. InfoNCE [18, 22, 23, 25] is applied to optimize the
similarity between the ground truth object feature and the
hidden states of the special <ground> token.

A.4. Evaluation Details

For ScanRefer [3], we simply select the object pro-
posal with the highest similarity as the prediction. For
Multi3DRefer [30], we choose the objects with the high-
est probabilities until the cumulative probability of select-
ing these objects surpasses 25%. For Scan2Cap [7], we
follow [13, 33] to evaluate the captioning performance by
inserting special <sos> and <eos> tokens at the start and
end of the prediction, respectively. Greedy sampling is uti-
lized for both 3D dense captioning and 3D question answer-
ing tasks.

1

https://haochen-wang409.github.io/ross3d


γ SQA3D ScanQA ScanRefer Multi3DRefer

0.125 62.0 105.6 60.2 59.1
0.25 63.0 107.0 61.1 59.6
0.5 61.8 105.3 60.8 59.6
0.75 61.2 104.9 60.8 59.0

Table S2. Ablations on the masking ratio γ. A relatively small
masking ratio performs slightly better, but overall, ROSS3D is ro-
bust against γ.

∆t SQA3D ScanQA ScanRefer Multi3DRefer

4 63.0 107.0 61.1 59.6
2 62.6 105.4 60.9 59.2
1 61.8 104.8 61.2 59.5

Table S3. Ablations on the interval ∆t. We implement our Lcorss
3D

and Lglobal
3D every ∆t steps.

BEV res. filter SQA3D ScanQA ScanRefer

256×256 ✓ 62.3 106.5 60.9
432×432 – 61.8 104.6 60.2
432×432 ✓ 63.0 107.0 61.1

1024×1024 ✓ 62.7 106.5 61.4

Table S4. Ablations on global-view reconstruction. “Filter” in-
dicates whether filtering out black spaces or not.

α SQA3D ScanQA Scan2Cap ScanRefer Multi3DRef

0.5 62.3 30.9 83.4 60.8 59.3
1 63.0 30.8 81.3 61.1 59.6
5 61.9 31.0 81.1 60.9 59.2

Table S5. Ablation of the denoising loss weight α, where our
ROSS3D is quite robust against different values of α.

B. More Experiments

B.1. More Ablation Studies

Design Choices for Cross-View Reconstruction. We ab-
late the masking ratio γ and the interval ∆t in Table S2 and
Table S3, respectively. These designs alleviate the discrep-
ancy between training and testing. Empirically, a relatively
small masking ratio, i.e., 25%, together with an appropriate
interval, i.e., 4, performs the best among others. But overall,
ROSS3D is robust against these designs.

Design Choices for Global-View Reconstruction. We ab-
late the BEV resolution and the filtering technique in Ta-
ble S4. ROSS3D is quite robust against these designs.

Denoising Loss Weight α. The denoising loss is around
0.2, while the cross-entropy loss is around 1. Therefore,
we simply add these two terms. We study different weights
α for the denoising loss in Table S5. ROSS3D is robust
against α.

Method Avg. What Is How Can Which Others

1 Video-3D-LLM 41.5 39.4 49.4 42.4 45.8 32.9 38.2
2 1⃝ + vanilla 41.7 38.0 49.6 43.2 44.7 35.0 40.3
3 1⃝ + cross-view 45.6 41.6 53.4 47.2 48.7 41.5 43.5
4 1⃝ + global-view 47.6 45.1 54.5 50.2 48.4 43.5 42.4
5 1⃝ + 3⃝ + 4⃝ 51.5 52.0 56.0 53.1 47.6 47.1 48.3

Table S6. Ablations on the multiple-choice version of SQA3D
[17], where we leverage Qwen2.5-72B-Instruct [27] to generate
candidate options.
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1 Video-3D-LLM 27.0 36.4 9.1 25.1 10.2 43.2 44.6 29.7 16.9
2 1⃝ + vanilla 27.9 58.0 11.5 29.8 13.9 34.8 27.8 38.6 8.6
3 1⃝ + cross-view 30.6 57.5 24.1 22.8 17.2 41.6 34.9 30.8 15.7
4 1⃝ + global-view 31.1 60.7 19.1 20.1 15.5 45.3 44.2 25.1 19.1
5 1⃝ + 3⃝ + 4⃝ 34.7 65.6 24.4 32.5 15.8 46.7 43.2 29.7 19.2

Table S7. Ablations on VSI-Bench [28] on the ScanNet [8] sub-
set, where depth images and camera poses are incorporated.

Question: I am using the towel and there is a 

bathroom cabinet on my right. Is the toilet on 

my left or right?

Video-3D-LLM: Left

ROSS3D: Right

Question: I am facing a chair and there is a 

printer on my right. If I turned directly around

and walked straight, what would I first hit?

Video-3D-LLM: Chair

ROSS3D: Cart

Figure S1. Qualitative comparison with Video-3D-LLM [33].
Thanks to the proposed two 3D-aware visual pretext tasks,
ROSS3D has a stronger ability to interpret the overall 3D scene.

SQA3D-MCQ. In addition to conventional LM metrics,
we introduce a more precise evaluation based on LLM-
generated multiple-choice QA for SQA3D [17]. Under this
new evaluation protocol demonstrated in Table S6, our re-
sults consistently demonstrate that 3D-aware visual pretext
tasks are crucial.

VSI-Bench. Furthermore, in Table S7, we evaluate on VSI-
Bench [28] on the ScanNet [8] subset, where depth im-
ages and camera poses are incorporated. The proposed two
3D-aware visual pre-text tasks are also effective on this ad-
vanced benchmark.

B.2. Qualitative Results
Qualitative Comparison with Video-3D-LLM [33]. We
provided qualitative comparisons in Figure S1, where
ROSS3D has a stronger ability to interpret the overall 3D
scene thanks to the proposed two 3D-aware pretext tasks.

Failure Cases. We incorporate some failure cases on
SQA3D [17] in Figure S2. (1) Mismatched perspectives
(left): The user describes the clothing rack as “behind me”
but the video shows it in front of the table. (2) Subtle
linguistic cues (right): “Twiddling my thumbs together of
boredom” implies there is no computer in front of the user.

General Video Understanding.



Question: I am standing fixing the lamp that

is on top of the table and behind me there is a 

clothing rack. What is on the left of the 

clothing rack behind me?

ROSS3D: Curtain

Ground-Truth: Box

Question: I am sitting on a chair facing the 

table and twiddling my thumbs together of 

boredom. What is the first object to my direct 

left of me?

ROSS3D: Bookshelf

Ground-Truth: Window

Figure S2. Failure cases on SQA3D [33]. It struggles with mis-
matched perspectives (left) and subtle linguistic cues (right).

Method Video-MME

GPT4Scene64f 58.4
Video-3D-LLM64f 60.1
ROSS3D64f 60.7

We evaluate ROSS3D on
Video-MME [10] using
VLMEvalKit [9], without
depth images and camera
poses as inputs, where ROSS3D surpasses GPT4Scene [19]
and Video-3D-LLM [33].

B.3. Full Comparison
We present full comparisons with previous approaches
with the complete metrics for all benchmarks. Specifi-
cally, we provide Table S8 for SQA3D [17], Table S9 for
ScanQA [1], Table S10 for ScanRefer [3], and Table S11
for Multi3DRefer [30], respectively. Our ROSS3D signifi-
cantly outperforms across all benchmarks, highlighting the
effectiveness of 3D-aware visual supervision for 3D LMMs.
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Method
Question Type

Avg. (EM) EM-R
What Is How Can Which Others

Expert Models
SQA3D [17] 31.6 63.8 46.0 69.5 43.9 45.3 46.6 –
3D-VisTA [35] 34.8 63.3 45.4 69.8 47.2 48.1 48.5 –

2D LLMs
InternVL2-8B [21] 30.5 53.8 5.5 47.3 25.8 36.3 33.0 45.3
Qwen2-VL-7B [24] 29.0 59.2 33.4 50.5 44.2 43.2 40.7 46.7
LLaVA-Video-7B [31] 42.7 56.3 47.5 55.3 50.1 47.2 48.5 –

3D LMMs
LEO [13] – – – – – – 50.0 52.4
Scene-LLM [11] 40.9 69.1 45.0 70.8 47.2 52.3 54.2 –
ChatScene [29] 45.4 67.0 52.0 69.5 49.9 55.0 54.6 57.5
LLaVA-3D [34] – – – – – – 55.6 –
Video-3D-LLM [33] 51.1 72.4 55.5 69.8 51.3 56.0 58.6 –
GPT4Scene-HDM‡ [19] 55.9 69.9 50.8 68.7 53.3 60.4 59.4 62.4
ROSS3D 56.0 79.8 60.6 70.4 55.3 60.1 63.0 65.7

Table S8. Full comparison of 3D question answering on SQA3D [17] test set. “‡” indicates this result is achieved by adopting a larger
input resolution (512×490) and incorporating extra BEV inputs.

Method
BLEU-n Metrics Language Generation Metrics

EM BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr

Expert Models
ScanQA [1] 21.1 30.2 20.4 15.1 10.1 33.3 13.1 64.9
3D-VLP [15] 21.7 30.5 21.3 16.7 11.2 34.5 13.5 67.0
3D-VisTA [35] – – – – 13.9 35.7 – –

2D LLMs
InternVL2-8B [21] 16.9 20.0 9.8 5.2 2.7 32.6 14.5 55.3
Qwen2-VL-7B [24] 19.0 27.8 13.6 6.3 3.0 34.2 11.4 53.9
LLaVA-Video-7B [31] – 39.7 26.6 9.3 3.1 44.6 17.7 88.7

3D LMMs
3D-LLM [12] 20.5 39.3 25.2 18.4 12.0 35.7 14.5 69.4
Chat-3D [26] – 29.1 – – 6.4 28.5 11.9 53.2
LL3DA [5] – – – – 13.5 37.3 15.9 76.8
LEO [13] 24.5 – – – 11.5 39.3 16.2 80.0
Scene-LLM [11] 27.2 43.6 26.8 19.1 12.0 40.0 16.6 80.0
ChatScene [29] 21.6 43.2 29.1 20.6 14.3 41.6 18.0 87.7
Grounded 3D-LLM [6] – – – – 13.4 – – 72.7
LLaVA-3D [34] 27.0 – – – 14.5 50.1 20.7 91.7
Video-3D-LLM [33] 30.1 47.1 31.7 22.8 16.2 49.0 19.8 102.1
GPT4Scene-HDM‡ [19] 28.2 44.4 30.3 22.3 15.5 46.5 18.9 96.3
ROSS3D 30.8 49.2 33.7 24.9 17.9 50.7 20.9 107.0

Table S9. Full comparison of 3D question answering on ScanQA [17] validation set. “‡” indicates this result is achieved by adopting a
larger input resolution (512×490) and incorporating extra BEV inputs.
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Method
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Expert Models
ScanRefer [3] 76.3 53.5 32.7 21.1 41.2 27.4
3D-VLP [15] 84.2 64.6 43.5 33.4 51.4 39.5
3D-VisTA [35] 81.6 75.1 43.7 39.1 50.6 45.8
MVT [14] 77.7 66.5 31.9 25.3 40.8 33.3
3DVG-Trans [32] 81.9 60.6 39.3 28.4 47.6 34.7
ViL3DRel [4] 81.6 68.6 40.3 30.7 47.9 37.7
3DJCG [2] 83.4 64.3 41.4 30.8 49.6 37.3
M3DRef-CLIP [30] 85.3 77.2 43.8 36.8 51.9 44.7

3D LMMs
3D-LLM [12] – – – – 30.3 –
Grounded 3D-LLM [6] – – – – 47.9 44.1
LLaVA-3D [34] – – – – 54.1 42.2
ChatScene [29] 89.6 82.5 47.8 42.9 55.5 50.2
Video-3D-LLM [33] 88.0 78.3 50.9 45.3 58.1 51.7
GPT4Scene-HDM‡ [19] 90.3 83.7 56.4 50.9 62.6 57.0
ROSS3D 87.2 77.4 54.8 48.9 61.1 54.4

Table S10. Full comparison of 3D visual grouding on ScanRefer [3] validation set. “‡” indicates this result is achieved by adopting a
larger input resolution (512×490) and incorporating extra BEV inputs. “Unique” and “Multiple” depend on whether there are other objects
of the same class as the target object.

Method
ZT w/o D ZT w/ D ST w/o D ST w/ D MT ALL

F1 F1 F1@0.25 F1@0.5 F1@0.25 F1@0.5 F1@0.25 F1@0.5 F1@0.25 F1@0.5

Expert Models
3DVG-Trans [32] 87.1 45.8 – 27.5 – 16.7 – 26.5 – 25.5
M3DRef-CLIP [30] 81.8 39.4 53.5 47.8 34.6 30.6 43.6 37.9 42.8 38.4
3DJCG [2] 94.1 66.9 – 26.0 – 16.7 – 26.2 – 26.6

3D LMMs
ChatScene [29] 90.3 62.6 82.9 75.9 49.1 44.5 45.7 41.1 57.1 52.4
Video-3D-LLM [33] 94.7 78.5 82.6 73.4 52.1 47.2 40.8 35.7 58.0 52.7
GPT4Scene-HDM‡ [19] 97.4 84.4 85.0 77.7 59.9 55.1 48.6 44.6 64.5 59.8
ROSS3D 93.6 77.8 80.2 72.1 54.7 49.6 44.3 39.1 59.6 54.3

Table S11. Full comparison of 3D visual grouding on Multi3DRefer [30] validation set. “‡” indicates this result is achieved by adopting
a larger input resolution (512×490) and incorporating extra BEV inputs. “ZT” means zero-target. “ST” denotes single-target and “MT” is
multi-target. “D” indicates distractor.
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