
SEGA: A Stepwise Evolution Paradigm for Content-Aware Layout Generation
with Design Prior

Supplementary Material

1. Overview

In this appendix, we provide additional details which
were omitted in the main manuscript due to space con-
straints. First, we introduce more specifics for our pre-
sented GenPoster-100K dataset, including the data diversity
and data structure. Then, we give more technical details of
our proposed method. Finally, more experimental results
are reported to perform a comprehensive evaluation of our
method.

2. GenPoster-100K Dataset

Here, we introduce more details of our proposed GenPoster-
100K dataset. Due to the limited coverage of existing
datasets, which only include e-commerce scenarios and
have relatively single layout patterns, methods based on
large models can easily fit the layout patterns and achieve
performance close to saturation, as shown in Table 1. There-
fore, a dataset with more diverse scenes and more complex
layouts is needed to expand the boundary of the models in
designing layouts. The key features of the dataset are in the
following.

2.1. Diversity

The dataset is composed of 105456 poster instances. The
dataset includes a diverse range of poster categories such
as commercial, event, and product posters to ensure that
the dataset covers a broad spectrum of real-world appli-
cations. Some examples of our proposed dataset are dis-
played in Figure 1. he diversity of the dataset is reflected
in the poster’s resolution, element quantity, and element at-
tributes as well. The poster resolution ranges from 640x480
to 4000x3000, with element quantities spanning from a few
to hundreds, as shown in Figure 2. This ensures that the
dataset covers a broad spectrum of real-world layouts. In
terms of element attributes, we provide fine-grained proper-
ties such as text content, font, font size, case, letter spacing,
line spacing, rotation angle, alignment, text box, opacity,
and color. These rich attributes offer a solid foundation for
models to understand poster design and layouts. In terms of
text content, the dataset includes different kinds of English
text, such as titles, subtitles, body text, telephone numbers,
addresses, websites, etc, as shown in Figure 4. Long body
text is often represented by non-meaningful text, allowing
for a more nuanced understanding and arrangement of tex-
tual content.

2.2. Hierarchical Structure

In the dataset, the elements’ hierarchical structure of each
poster is preserved, as shown in Figure 3. Our dataset pro-
vides clean and artifact-free background images and ren-
dered images of each text element, allowing for the flexible
composition of design elements. One can decide which el-
ement should be put on or taken off from the canvas, which
makes the design of various learning tasks possible. In
poster design, a coherent layout can only be furnished upon
comprehending the intertextual relationships and their re-
spective roles within the context of the background imagery.
The dataset also depicts the structure of the texts. For exam-
ple, ’Back’, ’To’, and ’School’ as separate layers, which
adds a layer of complexity to the design task by requiring
the models to understand the inter-text relations.

2.3. Posters with Textual Content

A significant advantage of our dataset is that many of the
PSD files are homogeneous, that is to say, multiple PSD
files are from the same original PSD file. These sub-PSDs
possess the same text but different background designs. The
model needs to understand the same text, which allows for
training models to be robust against variations in text ar-
rangement. This feature helps to prevent overfitting by en-
suring that the model learns to adapt to different contexts.
Furthermore, these similar poster instances can be utilized
to examine the robustness of retrieval-based methods as a
potential usage.

3. More Details of Our Method

3.1. Dataset Prune

In section 3.3.1 of the main manuscript, we mention that
we prune the layout GT by removing samples that are not
aligned with our design principles. Specifically, we used
unsupervised metrics to evaluate the quality of GT and ex-
cluded the lower-scoring 70% samples that violated design
principles, totaling 4623.

3.2. Perturb Algorithm

In section 3.3.2 of the main manuscript, we mention that we
perturb the layout GT to increase the diversity of RF mod-
ule training data. We follow the symbol usage in the main
manuscript and the detailed perturbing process is described
in algorithm 1.



Figure 1. Some exemplars from GenPoster-100K dataset.

Figure 2. Statistics on layout variety in GenPoster-100K dataset.

Figure 3. The hierarchical structure of a poster instance.

4. Experiments

4.1. Implementation details

4.1.1. Training Setup
All our experiments are carried out with PyTorch with
AdamW optimizer and 8 NVIDIA A100-40GB GPUs. We
follow most of the training recipe of instruction tuning
in LLaVA-1.5 [10] to set the hyper-parameters for experi-
ments. The batch-size is set to 128. To preserve the learned

Figure 4. Category distribution of GenPoster-100K’s elements.

knowledge of the pre-trained multimodal LLM, we lever-
age Low-rank adaptation (LoRA) [4] to perform efficient
fine-tuning and completely freeze the vision backbone. To
improve the training efficiency of LoRA, we empirically set
the rank value to 128 and alpha value to 256. Moreover, the
rope scaling [11] is adopted to enable the model to handle
longer prompts for including the layout to be refined, and



the scaling factor hyper-parameter is set to 2.

Algorithm 1 Pseudocode for perturbing layout

Input: Layout GT LGT , Threshold ϵ
Output: Perturbed layout LPerturb

1: total num← Len(LGT)
2: LPerturb ← LGT

3: while True do
4: idx← Randomchoose(total num)
5: eidx ← LGT[idx]
6: e∗idx ← Perturb(eidx)
7: LPerturb[idx]← e∗idx
8: p cur ← Uniform(0, 1)
9: if p cur < ϵ then

10: break
11: end if
12: end while
13: return LPerturb =0

4.1.2. Testing Setup
To ensure the reliability of the results, we generate layouts
on three independent trials and report the average of the
metrics. With the temperature set to 0.2, we use random
sampling for all the models.

4.1.3. Instruction Tuning Template
SEGA adopts two sequential stages: Coarse-level Estima-
tion and Fine-level Refinement. Due to the different fo-
cuses of the two stages, we use different instruction tun-
ing templates and show them in Figure 5. For the elements
in the layout, we uniformly express them in the format of
{category, bbox} to facilitate data connection between the
two stages.

4.2. Dataset
In this part, we introduce our utilized three datasets:
PKU [3], CGL [16], and Crello [13]. PKU [3] and
CGL [16] for content-aware layout generation, primarily
composed of posters from e-commerce scenarios, such
as cosmetics and clothing. Specifically, the PKU dataset
includes three element categories: logo, text, and underlay,
and contains 9,974 annotated posters, constituted by
layouts and corresponding content images. While CGL
additionally contains embellishment elements and com-
prises 60,548 annotated posters. For these two datasets, we
follow RALF [2] to create dataset splits with a train/val/test
ratio of roughly 8:1:1 in the annotated subset. Since the
two above-mentioned datasets are mainly restricted by
e-commerce themes, to testify the layout designing ability
of the model in the more challenging and generalized
scene, we employ the Crello [13] dataset and conduct ex-
periments on it to further evaluate our method. It contains
23,182 posters collected from the web, preserving all the

separated elements for each poster without layout element
category annotation. To annotate the category for each
layout element, we first use Yi-34B LLM [15] to classify
all of the input text of textual elements into 13 predefined
categories (i.e. ’Title’, ’Subtitle’, ’Bodytext’,
’Date’, ’Name’, ’Website’, ’Phone number’,
’Detailed items’, ’Calls to Action’, ’Menu
Items’, ’Social Media’, ’Location’, ’Others’).
Practically, we randomly choose 1000 layouts to check the
predefined categories, finding it achieves 96% annotation
accuracy. To further ensure the quality of category anno-
tation, we correct the potential mistakes over the whole
dataset by manually verifying. Then, we combine all
non-text elements to create a background content image.
Doing so allows us to organize the Crello dataset into a
format similar to PKU and CGL, making it suitable for the
content-aware layout generation task.

It is noteworthy that in the Crello dataset, some under-
lay elements are coupled with the background image. We
get a preliminary draft of the underlay GT by detecting
closed curves that cover text elements and obtain the final
underlay GT through manual inspection. Then, we render
all non-text layers onto the background image, construct a
canvas, and plan all text elements on it, which means the
model needs to detect the underlay in the canvas and place
the element in it. This approach yields two distinct bene-
fits. Firstly, unlike the PKU and CGL datasets, which in-
paints the original poster to form a canvas, our generated
canvas does not contain any artifacts. Secondly, since the
underlay is no longer a discrete element requiring planning
but is already integrated into the canvas, it necessitates that
the model undertakes an analysis of the arrangement of ele-
ments on the canvas when planning text elements. This in-
tricate analysis aligns with the expectations of the content-
aware layout generation task. Lastly, we also correct the
potential failed annotation via manual adjustment over the
dataset.

4.3. Evaluation Metrics
Following previous works [3, 8, 12], we use three sets of
metrics to evaluate our method: Graphic metrics, Con-
tent metrics, and Aesthetic scores. Graphic metrics as-
sess the coherence among predicted elements, including
Alignment (Ali ↓), Overlay (Ove ↓), Underlay
effectiveness loose (Und l ↑), and Underlay
effectiveness strict (Und s ↑).
Alignment (Ali ↓) is the extent of spatial non-

alignment between elements.
Overlay (Ove ↓) represents the average Intersection

over the union of all element pairs, excluding underlay ele-
ments.
Underlay effectiveness (Und ↑) calculates the

proportion of valid underlay elements to the total underlay



Xsystem: A chat between a poster designer and an artificial intelligence assistant for poster design.
Human: Given a poster background image <image>\n and a series of text to be added to the poster subsequently, predict
the metadata for each text metadata listed below. Input: [{Category:Title, Char_num:9}, {Category:'Bodytext', Char_num:18},
{Category:'Website', Char_num:30}, ...].
AssistantCE: Underlay: [0.185, 0.042, 0.217, 0.289]\n, [{'Category': 'Title', 'Bbox': '[0.256, 0.05, 0.744, 0.21]'}, {'Category': 'Bodytext', 
'Bbox': '[0.297, 0.419, 0.703, 0.474]'}, {'Category': 'Website', 'Bbox': '[0.382, 0.495, 0.618, 0.511]'}, ...]

Xsystem : A chat between a poster designer and an artificial intelligence assistant for poster design. Given a poster and layouts, 
the assistant should refine the layout accoding to the poster requirements.
Human: Given a poster image <image>\n and a poster layout, please read the underlay, refine the layouts and give reasons. Input: 
Layouts to be refined: [{'Category': 'Title', 'Bbox': '[0.256, 0.05, 0.744, 0.21]'}, {'Category': 'Bodytext', 'Bbox': '[0.297, 0.419, 0.703, 0.474]'}, 
{'Category': 'Website', 'Bbox': '[0.382, 0.495, 0.618, 0.511]'}, ...]
AssistantFR: Underlay: [0.185, 0.042, 0.217, 0.289]\n, Reasons:1.Text elements are obscuring the important details in the background 
image.\n, [{'Category': 'Title', 'Bbox': '[0.334, 0.042, 0.665, 0.147]'}, {'Category': 'Bodytext', 'Bbox':   '[0.354, 0.458, 0.644, 0.506]'}, {'Category': 
'Website', 'Bbox': '[0.196, 0.056, 0.206, 0.275]'}, ...]

Coarse-level Estimation

Fine-level Refinement

Figure 5. An example of our instruction tuning templates. As shown in the orange part of the figure, the output of the model in the
Coarse-level Estimation stage serves as the input of the model in the Fine-level Refinement stage. The input image is marked as <image>.
The parts marked by gray background are used to compute the loss in the auto-regressive model.

elements. An underlay is regarded as valid and scores 1
if it entirely covers a non-underlay element; otherwise, it
scores 0 in strict standard, subscribed Und s ↑. In contrast,
Und l ↑ calculates the area ratio of the non-underlay ele-
ment covered by the underlay. It is worth noting that since
the underlay in Crello dataset has already been rendered on
the canvas. All text elements and the GT of the underlay
elements are used to calculate this metric.

Content metrics evaluate the harmony between the pre-
dicted elements and the background image, including Read-
ability score (Rea ↓) and Occlusion (Occ ↓).
Readability score (Rea ↓) evaluates the non-

flatness of text elements by calculating gradients in the im-
age space along both vertical and horizontal axes within
these elements.

Occlusion (Occ ↓) computes the average saliency
value in the overlapping region between the saliency map
S and the layout elements.

Due to the overlap between our design priors and unsu-
pervised evaluation metrics, to fairly evaluate the effective-
ness of our method, we also referred to COLE [7] to lever-
age GPT for quality evaluation from a more comprehensive
perspective. Specifically, by utilizing GPT-4V [1], we con-
ducted a comprehensive evaluation named aesthetic scores
that measure the overall aesthetic quality and harmony of
the elements in the graphic composition from four indepen-
dent perspectives and reported the final average score.

SDL ↑ means the graphic design should present a clean,
balanced, and consistent layout. The organization of ele-
ments should enhance the message, with clear paths for the
eye to follow.

SGI ↑ reflects that any graphics or images used should
enhance the design rather than distract from it. They should
be high quality, relevant, and harmonious with other ele-
ments.

SIO ↑ evaluates the innovation level of the design.
STV ↑ represents text readability. A lower score is as-

signed if the readability of the text is poor due to the color
of the text being similar to the background color or overlap-
ping of the text.

4.4. Methods in Experiments
The main comparison methods in our experiments are in-
troduced here:
CGL-GAN [16] is a non-autoregressive encoder–decoder
model employing a Transformer architecture.
FlexDM [6] can take all the rendered elements as inputs
into a transformer. We assemble all graphical elements into
a background, then feed it along with all the rendered text
to FlexDM for fair comparison.
RALF [2] is a method for layout generation that uses a
transformer as its backbone and leverages advanced re-
trieval enhancement techniques, which is currently the top-
performing method among non-large model techniques in



terms of performance.
PosterLlama [12] is a layout generation network that re-
forms layout elements into HTML code and leverages the
rich design knowledge embedded within language models.
SEGA w/o FR refers to the model only adopts the coarse-
level estimation module fine-tuned on the target dataset
using the open-source multi-modal large-scale model,
LLaVA-1.5 [9]. It is used as the comparative baseline for
our method.
SEGA w/o FR (Ens-k) uses the same model with SEGA
w/o FR module, but infer k times and adopt the best results
as the final output. It is worth noting that we use the method
of averaging the results of unsupervised indicators to select
the best inference result.
SEGA is our full model, employs a stepwise evolution
Paradigm for Content-Aware Layout Generation. It first
uses the Coarse-level Estimation module (CE module) to
roughly estimate the intermediate layouts and utilizes the
Fine-level Refinement module (FR module) to iteratively
refine the intermediate layouts.

4.5. More Quantitative Results
Content-aware layout generation has two main subtasks:
constrained layout generation and unconstrained layout
generation. Their difference lies in whether generation con-
straints exist, such as having a title and two text elements.
In the main text, we focus on the more challenging con-
strained layout generation and only post the unconstrained
experiment in the Crello dataset. Here, we conduct more
unconstrained layout generation experiments in the PKU
and CGL datasets. As shown in Table 1, our method SEGA
achieves the best results in most indicators, except the oc-
clusion and unreadability where the LLM-based methods
are not good due to the limited vision encoder. We still
achieve the sub-optimal results in the comparison methods.

Moreover, we add quantitative results for different infer-
ence rounds that are not presented in the main manuscript.
As shown in Table 3, when the number of iteration rounds
increases, the quality of the layout gradually improves and
reaches a maximum.

4.6. Impact of Different Configurations
In this section, we introduce more experimental results that
are not contained in the main manuscript, including the role
of each design principles, the impact of the Data pruning,
the impact of different initialization of FR modules, differ-
ent ways of layout rendering in the canvases and the detail
of the perturbed layouts for FR module training.

4.6.1. Design Principles
To more effectively illustrate the significance of the design
principles we have summarized, we eliminate all design
principles in SEGA, thereby obtaining config 1 as presented
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Figure 6. Example for different rendering strategies.

in Table 2. Subsequently, we incrementally incorporate the
design principles into the model. It is evident that upon the
integration of the corresponding design principles into our
method, the associated performance is enhanced, thereby
validating the successful utilization of each layout design
principle by SEGA.

4.6.2. Data Prune
From the results of the ablation experiment, it can be seen
that our data-pruning strategy has greatly improved the per-
formance of the model, but we must emphasize that this
only holds for the training of the refine model. As shown in
Table 4, the performance of the baseline model trained on
the same pruned dataset decreased. We believe this is be-
cause the refinement stage has higher requirements for data
quality compared to planning, and planning places more
emphasis on diversity.

4.6.3. Initialization of FR module
We evaluate the impact of different initialization manner
of the FR module, including those from LLaVA-1.5 and
the CE module. As illustrated in Table 5, the FR module,
when initialized from the CE module, yields superior per-
formance, due to its richer layout design knowledge.

4.6.4. Element Rendering Strategy
Inspired by the previous work about visual prompt [14],
we try to figure out the best render method to put the el-
ement layers into the canvas. We try two different strate-
gies for layer rendering: 1) the layout with category-wise
color blocks, and 2) the original layer image, illustrated in
Figure 6. As shown in Table 6, rendering layers with cor-
responding color blocks is better than rendering the corre-
sponding layer image of the poster. Thereby, we adopt ren-
dering color blocks as the rendering method of SEGA.

4.7. Impact of Pre-training on the GenPoster-100K
Dataset

In order to investigate the effectiveness of GenPoster-100K
as a pre-training dataset, we also conduct transfer training
experiments on the PKU and CGL dataset, using the pre-
trained model weights on GenPoster-100K as initialization



Method
PKU CGL

Graphic Content Graphic Content

Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓ Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓
Non-LLM Based

CGL-GAN [17] (IJCAI, 2022) - 0.0380 - 0.4800 0.0158 0.1320 - 0.0470 - 0.6500 0.0213 0.1400
LayoutDM [5] (CVPR, 2023) - 0.1720 - 0.4600 0.0201 0.1520 - 0.0260 - 0.7900 0.0192 0.1270

RALF [2] (CVPR, 2024) 0.0028 0.0083 0.9808 0.9201 0.0128 0.1195 0.0023 0.0041 0.9912 0.9756 0.0179 0.1246
LLM Based

PosterLlama [12] (ECCV, 2024) 0.0015 0.0030 0.9998 0.9910 0.0188 0.2087 0.0005 0.0007 0.9990 0.9909 0.0302 0.2471
SEGA w/o FR module 0.0021 0.0004 0.9908 0.9863 0.0132 0.1162 0.0019 0.0002 0.9988 0.9875 0.0292 0.2406

SEGA 0.0014 0.0003 1.0000 0.9986 0.0131 0.1160 0.0017 0.0004 0.9936 0.9917 0.0285 0.2367

Table 1. Comparisons results on the PKU and CGL dataset under unconstrained generation setting. For better display, we bold the
best values and underline the second values. Our SEGA achieves the best results except for the content metric that the LLM-based method
is not good at, and also achieves better performance than PotserLlama in terms of those two metrics.

Config
Design Principles Graphic Content

Alignment Occulusion Underlay Overlay Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓
1 0.0098 0.0092 0.9567 0.9157 0.0252 0.3947
2 ✓ 0.0086 0.0095 0.9537 0.9200 0.0250 0.3942
3 ✓ ✓ 0.0087 0.0093 0.9523 0.9094 0.0259 0.3910
4 ✓ ✓ ✓ 0.0089 0.0089 0.9593 0.9247 0.0257 0.3917
5 ✓ ✓ ✓ ✓ 0.0095 0.0025 0.9541 0.9270 0.0260 0.3907

Table 2. The impact of different design principles. We remove all design principles integrated into the SEGA framework and inject
design principles one by one to analyze their impact on model performance.

Method
Graphic Content

Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓
SEGA w/o FR 0.0102 0.0093 0.8485 0.7315 0.0271 0.3948

SEGA T=1 0.0096 0.0025 0.9553 0.9235 0.0265 0.3919
SEGA T=2 0.0095 0.0024 0.9541 0.9270 0.0260 0.3907
SEGA T=3 0.0096 0.0023 0.9603 0.9358 0.0257 0.3913
SEGA T=4 0.0094 0.0025 0.9630 0.9375 0.0257 0.3902

Table 3. The impact of refinement iteration rounds under con-
strained generation setting.

Setting
Graphic Content

Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓
Origin Data 0.0102 0.0093 0.8485 0.7315 0.0271 0.3948
Pruned Data 0.0076 0.0107 0.7071 0.5207 0.0414 0.4329

Table 4. The Impact of Data Prune on SEGA w/o FR module.
Data prune is not as effective on SEGA w/o FR module as it is on
the refine model.

Setting
Graphic Content

Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓
Initialized from LLaVA 0.0097 0.0031 0.9610 0.9188 0.0285 0.3921

Initialized from CE 0.0095 0.0025 0.9541 0.9270 0.0260 0.3907

Table 5. The impact of different initialization strategy of the
FR module.

and then conducting SEGA training. To further validate its
effectiveness, we compare it with the SEGA 13B. As shown
in Table 7, even with our best approach, pre-training can

Setting
Graphic Content

Ali ↓ Ove ↓ Und l ↑ Und s ↑ Read ↓ Occ ↓
Render Layer Image 0.0092 0.0043 0.9307 0.9246 0.0255 0.3943
Render Color Block 0.0095 0.0025 0.9541 0.9270 0.0260 0.3907

Table 6. The impact of different layout rendering modes to be
refined onto the background image.

further improve the performance of the model.

4.8. More Qualitative Results
In the main text, due to limited space, we only present some
layout results. Here, we display more comparative visual-
ization results, as shown in Figure 7, and Figure 8.
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