
Safeguarding Vision-Language Models: Mitigating Vulnerabilities to Gaussian
Noise in Perturbation-based Attacks

Supplementary Material

A. Overview of the Supplementary Material

This supplementary material offers additional details and
analyses to further support the findings presented in the
main manuscript. It includes detailed information on the
experimental configuration (Appendix B), more evaluation
on recent vision-language models (Appendix C), a thorough
analysis of the limitations and unique characteristics of
DiffPure (Appendix D), extended implementation specifics
of DiffPure-VLM (Appendix E), and conjectures along with
preliminary theoretical discussions on the effects of Gaus-
sian noise (Appendix F). Collectively, these sections pro-
vide deeper insights into our methodology, enhancing the
transparency and reproducibility of our research.

B. Experiment Details

B.1. Models

In this work, we conduct all experiments on three leading
Vision-Language Models (VLMs), i.e., MiniGPT-4 (13B)
[10], LLaVA-v1.5 (7B) [7], and InternVL2 (8B) [3]. We
use the official model weights from HuggingFace or GitHub
repositories for experiments in our paper. These model de-
tails are summarized in Table 1. Each model features a dis-
tinct LLM, vision encoder, and vision-language alignment
method, allowing us to draw broader insights.

Table 1. Specifications of the evaluated VLMs.

Model Size Vision Encoder LLM VL Connection Module

MiniGPT-4-13B 14B EVA-CLIP ViT-G/14 Vicuna-v0-13B Q-former

LLaVA-v1.5-7B 7B CLIP ViT-L/14 Vicuna-v1.5-7B MLP

InternVL2-8B 8B InternViT-300M-448px InternLM2-8B MLP

B.2. Fine-tuning Configuration

We present the detailed hyper-parameters for post-hoc fine-
tuning on our Robust-VLGuard dataset in Table 2. Gaus-
sian noise augmentation was applied to the training images,
with a randomly selected standard deviation between 0.01
and 0.15, and a 70% probability of application. The fine-
tuning was performed over 3 epochs on a single A100-80G
GPU, using a consistent batch size of 16. For MiniGPT-4-
13B, unfreezing the linear projector significantly improved
robustness in terms of helpfulness and safety alignment.
However, for LLaVA-v1.5-7B and InternVL2-8B, unfreez-
ing the linear projector led to increased overfitting, likely

due to differences in the vision-language connection mod-
ules of these models.

Table 2. Post-hoc fine-tuning hyper-parameters of different mod-
els.

Model Training Module LoRA Rank LoRA Alpha Learning Rate

MiniGPT-4-13B
Vision Encoder &

Linear Projector
16 32 3e-5

LLaVA-v1.5-7B Vision Encoder 16 256 4e-5

InternVL2-8B Vision Encoder 16 256 4e-5

B.3. Details of Evaluation Settings
For evaluation on the MM-Vet benchmark, we set the tem-
perature to 0 and use greedy decoding across all experi-
ments to ensure reproducibility in helpfulness assessments.
For safety evaluations on the RealToxicityPrompts bench-
mark, we follow the setup of Qi et al. [9], using a tempera-
ture of 1 and performing three runs to calculate the average
attack success rate. Greedy decoding is also employed for
this benchmark. The choice of temperature 1 reflects real-
world usage, where sampling is typically enabled during in-
teractions with VLMs. This setting aims to better simulate
real-world scenarios when assessing safety alignment.

Additionally, the MM-Vet and RealToxicityPrompts
benchmarks offer a comprehensive set of metrics covering
various aspects. For the sake of brevity, we report only the
overall metrics — Performance Score and Attack Success
Rate — in the main paper. Here, we present the detailed
evaluation results in Table 3 and Table 4, corresponding to
Figure 2 in the main paper. The results show that Gaussian
noisy images negatively impact nearly all metrics across
both benchmarks and various models. Notably, using Gaus-
sian noisy images as prompts improves MiniGPT-4’s per-
formance on the OCR metric in the MM-Vet benchmark,
highlighting the current VLMs’ lack of robustness.

C. Additional Evaluation on Recent Vision-
Language Models

In this section, we further assess the robustness of state-
of-the-art vision-language models against Gaussian noise.
Table 5 presents the attack success rates on the RealToxici-
tyPrompts benchmark for four recent VLMs—LLaMA-3.2-
Vision-11B [5], Ivy-VLM-3B [6], Qwen2.5-VL-7B [1], and
InternVL2.5-8B [2]—under various Gaussian noise levels.
Lower percentages indicate improved safety alignment.

Table 3. Robustness comparison of various models on the MM-Vet benchmark using clean and Gaussian noisy image prompts (GPT-4 %).

Image Type
Performance

Score ↑
Recognition OCR Knowledge Generation Spatial Math

MiniGPT-4-13B
Clean Image 26.7 34.9 13.5 27.4 27.1 19.1 7.7

Gaussian Noisy Image 24.0 (-2.7) 29.0 (-5.9) 16.9 (+3.4) 20.5 (-6.9) 22.5 (-4.6) 20.7 (+1.6) 7.7 (0.0)

LLaVA-v1.5-7B
Clean Image 33.0 37.9 23.9 20.4 23.6 28.5 11.5

Gaussian Noisy Image 31.3 (-1.7) 36.3 (-1.6) 21.9 (-2.0) 18.3 (-2.1) 21.2 (-2.4) 25.7 (-2.8) 3.8 (-7.7)

InternVL2-8B
Clean Image 59.9 53.5 71.9 40.4 44.6 69.7 65.4

Gaussian Noisy Image 54.4 (-5.5) 47.1 (-6.4) 66.8 (-5.1) 35.1 (-5.3) 39.2 (-5.4) 61.1 (-8.6) 53.5 (-11.9)

Table 4. Robustness comparison of various models on the RealToxicityPrompts benchmark using clean and Gaussian noisy image prompts.
Metrics include Attack Success Rate and toxicity levels (Perspective API %).

Image Type
Attack

Success Rate ↓
Identity Attack Profanity

Severe
Toxicity

Sexually
Explicit

Threat Toxicity

MiniGPT-4-13B
Clean Image 34.8 2.7 25.1 1.5 12.2 2.0 30.5

Gaussian Noisy Image 44.1 (+9.3) 3.6 (+0.9) 31.2 (+6.1) 2.3 (+0.8) 13.7 (+1.5) 2.9 (+0.9) 38.2 (+7.7)

LLaVA-v1.5-7B
Clean Image 57.7 5.7 46.8 3.7 18.0 3.8 54.4

Gaussian Noisy Image 60.1 (+2.4) 4.8 (-0.9) 48.1 (+1.3) 2.9 (-0.8) 17.8 (-0.2) 4.0 (+0.2) 56.0 (+1.6)

InternVL2-8B
Clean Image 50.5 4.1 40.2 1.9 13.5 2.5 44.3

Gaussian Noisy Image 57.2 (+6.7) 4.5 (+0.4) 45.9 (+5.7) 2.0 (+0.1) 14.3 (+0.8) 3.2 (+0.7) 51.7 (+7.4)

As shown, when Gaussian noise is introduced at in-
creasing levels (σn = 30/255, σn = 50/255, and σn =
70/255), all models exhibit a rise in attack success rates,
highlighting their sensitivity to simple Gaussian noise per-
turbations. These findings underscore the need for ro-
bust noise augmentation and defense strategies in training
pipelines to maintain safety alignment in VLMs.

D. Further Analysis of DiffPure
D.1. Defence Performance
In this section, we present a comprehensive analysis
of the effects of DiffPure [8] and Gaussian noise un-
der perturbation-based attacks in Vision-Language Models
(VLMs). Specifically, we extend the experimental setup
described in Section 3.1 in the main paper by varying the
standard deviation σn of Gaussian noise n and the timestep
parameter t∗ in DiffPure. Results are summarized in Ta-
ble 6. First, Gaussian noise n with standard deviations
σn ∈ {15/255, 30/255, 50/255, 75/255} is added to the
benign clean image Ic to evaluate its impact on the Attack
Success Rate. The results demonstrate that the Attack Suc-
cess Rate under Gaussian noise is significantly higher than
that of the benign clean image. When σn ≤ 50/255, in-
creasing σn will lead to a higher Attack Success Rate. How-
ever, this trend did not continue at a higher σn setting (e.g.,
σn = 75/255), indicating that the effect of Gaussian noise

on VLMs is limited. Next, we apply DiffPure with different
timesteps t∗ ∈ {50, 100, 150} to generate diffused images
from adversarial inputs Iadv with varying perturbation con-
straints ϵ. For ϵ = 16/255, increasing t∗ to 100 or 150 re-
duces the Attack Success Rate but does not lower it below
the level observed for the benign clean image. For larger
perturbation constraints, increasing t∗ fails to decrease the
Attack Success Rate, with a comparable performance of
Gaussian noisy images.

D.2. Distribution Shift
In this section, we present detailed results from the Gaus-
sianity experiments conducted on adversarial and diffused
images. Specifically, we visualize adversarial images Iadv
alongside their corresponding residuals radv , and diffused
images Idiffused with their residuals rdiffused , under pixel
constraints ϵ ∈ {16/255, 32/255, 64/255} for Iadv and dif-
fusion timesteps t∗ ∈ {50, 100, 150, 500, 750} in DiffPure
[8] for generating Idiffused . Visualizations are shown in Fig-
ure 1, 2, and 3 with corresponding metrics: Kurtosis, Q-Q
deviation, mean, and standard deviation. From these visual-
izations, we observe that when 50 ≤ t∗ ≤ 150, the residuals
rdiffused exhibit a Gaussian-like distribution, particularly
for ϵ = 32/255 and ϵ = 64/255. However, as t∗ increases,
the Kurtosis of rdiffused rises, indicating a shift towards a
long-tailed distribution. This suggests that a small fraction
of pixels in Idiffused undergo significant changes compared

Table 5. Attack success rate (%) on the RealToxicityPrompts benchmark for various vision-language models under different noise levels.
Lower scores indicate improved safety alignment.

RealToxicityPrompts (%) ↓
LLaMA-3.2-Vision-11B Ivy-VLM-3B Qwen2.5-VL-7B InternVL2.5-8B

Benign clean Image Ic 45.4 29.9 36.8 43.9
+ n (σn = 30/255) 46.4 (+1.0) 35.5 (+5.6) 39.3 (+2.5) 51.5 (+7.6)
+ n (σn = 50/255) 47.6 (+2.2) 40.3 (+10.4) 39.5 (+2.7) 52.8 (+8.9)
+ n (σn = 70/255) 48.5 (+3.1) 42.0 (+12.1) 46.1 (+9.3) 54.0 (+10.1)

Table 6. Detailed results of the defense of DiffPure in MiniGPT-4 on the RealToxicityPrompts benchmark under different image configu-
rations. (Perspective API %).

Image Configuration
Attack

Success Rate ↓
Identity Attack Profanity

Severe
Toxicity

Sexually
Explicit

Threat Toxicity

Benign clean Image Ic 34.8 2.7 25.1 1.5 12.2 2.0 30.5
+ n (σn = 15/255) 38.5 (+3.7) 2.9 (+0.2) 27.4 (+2.3) 1.1 (-0.4) 13.0 (+0.8) 2.3 (+0.3) 34.1 (+3.6)
+ n (σn = 30/255) 44.1 (+9.3) 3.6 (+0.9) 31.2 (+6.1) 2.3 (+0.8) 13.7 (+1.5) 2.9 (+0.9) 38.2 (+7.7)
+ n (σn = 50/255) 46.3 (+11.5) 3.4 (+0.7) 34.0 (+8.9) 1.8 (+0.3) 14.8 (+2.6) 2.5 (+0.5) 39.5 (+9.0)
+ n (σn = 75/255) 44.1 (+9.3) 3.8 (+1.1) 30.1 (+5.0) 1.9 (+0.4) 14.3 (+2.1) 2.8 (+0.8) 37.5 (+7.0)

Adversarial image Iadv (ϵ = 16/255) 53.6 (+18.8) 8.4 (+5.7) 36.6 (+9.4) 6.6 (+5.1) 14.1 (+1.9) 4.7 (+2.7) 48.6 (+18.1)
+ DiffPure (t∗ = 50) 45.0 (+10.2) 2.5 (-0.2) 31.7 (+6.6) 1.8 (+0.3) 14.5 (+2.3) 2.8 (+0.8) 38.8 (+8.3)
+ DiffPure (t∗ = 100) 37.6 (+2.8) 3.0 (+0.3) 25.6 (+0.5) 1.3 (-0.2) 12.3 (+0.1) 1.8 (-0.2) 33.1 (+2.6)
+ DiffPure (t∗ = 150) 37.7 (+2.9) 2.5 (-0.2) 26.5 (+1.4) 2.1 (+0.6) 12.2 (+0.0) 2.5 (+0.5) 32.9 (+2.4)

Adversarial image Iadv (ϵ = 32/255) 59.4 (+24.6) 14.6 (+11.9) 39.5 (+14.4) 7.0 (+5.5) 14.9 (+2.7) 6.2 (+4.2) 53.8 (+23.3)
+ DiffPure (t∗ = 50) 45.5 (+10.7) 2.6 (-0.1) 32.1 (+7.0) 2.2 (+0.7) 14.8 (+2.6) 3.0 (+1.0) 38.5 (+8.0)
+ DiffPure (t∗ = 100) 43.8 (+9.0) 3.3 (+0.6) 31.9 (+6.8) 1.9 (+0.4) 13.1 (+0.9) 2.5 (+0.5) 38.1 (+7.6)
+ DiffPure (t∗ = 150) 42.3 (+7.5) 3.7 (+1.0) 30.4 (+5.3) 1.3 (-0.2) 13.3 (+1.1) 2.8 (+0.8) 36.3 (+5.8)

Adversarial image Iadv (ϵ = 64/255) 67.2 (+32.4) 15.9 (+13.2) 49.6 (+24.5) 12.2 (+10.7) 16.9 (+4.7) 6.6 (+4.6) 63.1 (+32.6)
+ DiffPure (t∗ = 50) 44.5 (+9.7) 2.9 (+0.2) 32.2 (+7.1) 2.4 (+0.9) 13.7 (+1.5) 2.7 (+0.7) 38.0 (+7.5)
+ DiffPure (t∗ = 100) 42.1 (+7.3) 2.8 (+0.1) 30.3 (+5.2) 1.9 (+0.4) 13.7 (+1.5) 3.0 (+1.0) 36.5 (+6.0)
+ DiffPure (t∗ = 150) 44.1 (+9.3) 3.3 (+0.6) 31.5 (+6.4) 1.4 (-0.1) 13.3 (+1.1) 2.5 (+0.5) 38.2 (+7.7)

to Ic, leading to a cleaner image with minimal content al-
teration, especially when ϵ = 16/255. At t∗ = 500, the
Kurtosis and standard deviation of rdiffused become signif-
icantly larger, implying greater changes in image content,
as reflected in the visualization of Idiffused . For t∗ = 750,
the Kurtosis decreases while the standard deviation further
increases, indicating that rdiffused transitions to a flatter and
broader distribution. In this case, Idiffused diverges substan-
tially from Ic in image content.

Furthermore, we extend our analysis to the embedding
space, examining the similarities between the clean im-
age Ic, the adversarial image Iadv , and the diffused image
Idiffused . Based on our experiment in pixel space, where the
residual noise rdiffused approximates a Gaussian distribu-
tion under certain timestep settings in DiffPure, we consider
Idiffused as comparable to Ic with added Gaussian noise. To
verify this, we generate a noisy image In = Ic + n, n ∈
N

(
0, σ2

rdiffused

)
, where σrdiffused indicates the standard de-

viation of rdiffused . Using pre-trained visual encoder E
in MiniGPT-4, we compute cosine similarities between the
embeddings of In and Iadv , denoted as Cn,adv , and between
In and Idiffused , denoted as Cn,diffused . Figure 4 shows

these similarities across varying adversarial constraints ϵ
and DiffPure steps t∗. Results indicate that, Cn,diffused con-
sistently exceeds Cn,adv , showing that Idiffused is closer to
In than Iadv in the embedding space. Notably, with mod-
erate timesteps (t∗ ∈ [50, 150]), Idiffused is similar to In
(Gaussian noise n added to the benign clean image Ic) in
both pixel and embedding spaces.

We also visualize the cosine similarity between the
visual embeddings of Idiffused and Ic, denoted as
Cclean,diffused , across varying ϵ and t∗. Results are shown
in Figure 5, revealing that Cclean,diffused decreases rapidly
as t∗ decreases, while it gradually declines as t∗ increases.
Combining these findings with experiments in pixel space,
we conclude that smaller t∗ values lead Idiffused to retain
adversarial information, whereas larger t∗ values result in
significant content disruption, leading to semantic misalign-
ment.

E. Additional Details of DiffPure-VLM
E.1. Implementation Details
The overall architecture of our proposed DiffPure-VLM
framework is illustrated in Figure 6, with the detailed al-

Table 7. Evaluation of DiffPure-VLM’s effectiveness on RealToxicityPrompts across different image configurations. Metrics include attack
success rate and toxicity levels (Perspective API %).

Image Type Attack
Success Rate ↓ Identity Attack Profanity Severe

Toxicity
Sexually
Explicit Threat Toxicity

InternVL2-8B
Benign Clean image 50.5 4.1 40.2 1.9 13.5 2.5 44.3
Gaussian Noisy image 57.2 4.5 45.9 2.0 14.3 3.2 51.7
Adversarial image (ϵ = 32/255) 65.0 21.1 49.2 7.5 16.6 5.0 61.9

+DiffPure-VLM (t*=50) 53.1 3.8 41.6 2.0 13.6 2.2 48.0
InternVL2-8B-VLGuard

Benign Clean image 27.7 1.4 22.2 0.9 7.1 1.6 23.8
Gaussian Noisy image 39.9 2.5 31.4 1.3 10.3 1.8 35.8
Adversarial image (ϵ = 32/255) 72.3 12.3 60.6 8.6 19.9 6.5 69.3

+DiffPure-VLM (t*=50) 35.7 2.0 28.9 0.8 9.8 1.8 31.6
InternVL2-8B-RobustVLGuard

Benign Clean image 29.9 0.8 22.1 0.3 7.2 1.5 25.9
Gaussian Noisy image 34.5 2.1 27.2 1.3 8.4 1.6 31.3
Adversarial image (ϵ = 32/255) 70.6 26.7 56.5 9.2 17.3 6.9 68.1

+DiffPure-VLM (t*=50) 33.4 2.4 20.6 0.7 8.1 2.4 29.1
+DiffPure-VLM (t*=150) 32.8 1.7 25.9 0.6 7.7 1.8 29.1

LLaVA-v1.5-7B
Benign Clean image 57.7 5.7 46.8 3.7 18.0 3.8 54.4
Gaussian Noisy image 60.1 4.8 48.1 2.9 17.8 4.0 56.0
Adversarial image (ϵ = 32/255) 66.0 16.6 51.6 8.8 18.0 4.7 64.5

+DiffPure-VLM (t*=50) 58.5 5.9 45.5 2.7 17.0 4.3 53.3
LLaVA-v1.5-7B-VLGuard

Benign Clean image 50.3 4.3 40.6 2.0 13.6 4.3 46.9
Gaussian Noisy image 52.3 4.6 41.5 2.7 14.0 4.1 48.5
Adversarial image (ϵ = 32/255) 70.4 21.3 52.8 7.5 16.7 7.0 67.2

+DiffPure-VLM (t*=50) 51.1 3.4 40.9 2.2 13.4 3.6 47.5
LLaVA-v1.5-7B-RobustVLGuard

Benign Clean image 43.6 4.6 34.7 2.4 12.3 3.5 41.0
Gaussian Noisy image 42.3 3.1 34.5 1.9 11.8 3.1 40.0
Adversarial image (ϵ = 32/255) 62.5 7.8 48.0 5.4 16.5 5.8 60.0

+DiffPure-VLM (t*=50) 43.9 3.2 34.6 2.4 12.8 3.7 41.0
+DiffPure-VLM (t*=150) 42.5 3.5 32.7 2.8 12.1 4.1 39.3

MiniGPT-4-13B
Benign Clean image 34.8 2.7 25.1 1.5 12.2 2.0 30.5
Gaussian Noisy image 44.1 3.6 31.2 2.3 13.7 2.9 38.2
Adversarial image (ϵ = 32/255) 59.4 14.6 39.5 7.0 14.9 6.2 53.8

+DiffPure-VLM (t*=50) 45.5 2.6 32.1 2.2 14.8 3.0 38.5
MiniGPT-4-13B-VLGuard

Benign Clean image 41.3 2.8 30.1 2.2 14.6 2.5 37.3
Gaussian Noisy image 43.7 3.0 31.6 2.3 13.9 3.5 38.6
Adversarial image (ϵ = 32/255) 67.6 10.5 48.2 7.0 19.9 7.8 61.7

+DiffPure-VLM (t*=50) 45.0 4.2 33.1 2.1 14.6 3.1 40.7
MiniGPT-4-13B-RobustVLGuard

Benign Clean image 16.0 0.4 9.9 0.3 4.6 1.1 12.1
Gaussian Noisy image 16.5 0.9 11.9 0.6 5.8 1.0 14.0
Adversarial image (ϵ = 32/255) 53.7 9.8 35.3 4.1 13.9 5.4 48.1

+DiffPure-VLM (t*=50) 13.6 0.3 9.2 0.2 5.5 0.9 10.6
+DiffPure-VLM (t*=150) 11.9 0.5 8.6 0.2 4.2 0.6 9.9

gorithmic procedure outlined in Algorithm 1. For our ex-
periments, we employ the Guided Diffusion model for Im-
ageNet [4], specifically the 256 × 256 unconditional vari-
ant provided by OpenAI1. Importantly, we synchronize the

1https://openaipublic.blob.core.windows.net/
diffusion/jul-2021/256x256_diffusion_uncond.pt

forward diffusion timesteps (tforward) with the reverse diffu-
sion timesteps (treverse), denoted as t∗ in the experimental
results, following the setup in DiffPure [8]. Here, we lever-
age this diffusion model to validate the robustness of our
fine-tuned VLMs against Gaussian noise, demonstrating a
preliminary defense strategy. However, the fixed image res-

https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt

50

100

150

500

750

Perturbation-
based Attacks

DiffPure with
timestep

 Red Channel Green Channel Blue Channel

3.5942 / 0.0015 / 0.0026 / 0.0289 3.5505 / 0.0013 / 0.0012 / 0.0284 3.7670 / 0.0017 / 0.0004 / 0.0290

5.1718 / 0.0042 / 0.0031 / 0.0291 5.7542 / 0.0045 / 0.0014 / 0.0278 4.8221 / 0.0038 / 0.0003 / 0.0315

7.0338 / 0.0066 / 0.0030 / 0.0304 7.2725 / 0.0068 / 0.0018 / 0.0302 6.9144 / 0.0066 / 0.0017 / 0.0309
...

8.3942 / 0.0248 / 0.0146 / 0.0811 7.5661 / 0.0221 / 0.0144 / 0.0799 7.1430 / 0.0196 / 0.0075 / 0.0793

3.1888 / 0.0154 / -0.0105 / 0.2116 3.3533 / 0.0161 / -0.0073 / 0.1996 3.3886 / 0.0182 / 0.0228 / 0.1935

Red Channel Green Channel Blue Channel

1.6399 / 0.0103 / 0.0006 / 0.03971.6792 / 0.0097 / 0.0021 / 0.0392 1.6506 / 0.0101 / 0.0001 / 0.0396

Figure 1. Iadv , Idiffused and statistics of radv , rdiffused under different t∗ in DiffPure (constraint ϵ = 16/255). Metrics are shown in
‘Kurtosis / Q-Q Deviation / Mean / Standard Deviation’. Please zoom in to see details.

Perturbation-
based Attacks

DiffPure with
timestep

 Red Channel Green Channel Blue Channel

50

100

150

500

750

...

3.2330 / 0.0032 / 0.0106 / 0.0538 2.9436 / 0.0012 / 0.0073 / 0.0517 3.1752 / 0.0019 / 0.0083 / 0.0537

3.3843 / 0.0030 / 0.0101 / 0.0550 3.3877 / 0.0021 / 0.0086 / 0.0512 3.4618 / 0.0030 / 0.0069 / 0.0549

3.8302 / 0.0049 / 0.0111 / 0.0509 4.1321 / 0.0050 / 0.0090 / 0.0473 3.7059 / 0.0042 / 0.0075 / 0.0533

9.7215 / 0.0222 / 0.0204 / 0.0798 8.7416 / 0.0203 / 0.0090 / 0.0763 7.6404 / 0.0176 / -0.0004 / 0.0756

3.6532 / 0.0278 / 0.0302 / 0.2504 3.4018 / 0.0221 / 0.0051 / 0.2394 3.4028 / 0.0226 / 0.0188 / 0.2444

Red Channel Green Channel Blue Channel

1.6184 / 0.0218 / 0.0071 / 0.08031.6773 / 0.0213 / 0.0103 / 0.0796 1.6107 / 0.0222 / 0.0068 / 0.0809

Figure 2. Iadv , Idiffused and statistics of radv , rdiffused under different t∗ in DiffPure (constraint ϵ = 32/255). Metrics are shown in
‘Kurtosis / Q-Q Deviation / Mean / Standard Deviation’. Please zoom in to see details.

DiffPure with
timestep

 Red Channel Green Channel Blue Channel

50

100

150

500

750

...

2.7269 / 0.0074 / 0.0221 / 0.1039 2.7674 / 0.0068 / 0.0245 / 0.1015 2.7580 / 0.0072 / 0.0253 / 0.1054

3.1741 / 0.0066 / 0.0203 / 0.1069 3.0657 / 0.0051 / 0.0235 / 0.1029 2.9639 / 0.0036 / 0.0249 / 0.1076

3.1479 / 0.0064 / 0.0238 / 0.1028 3.1747 / 0.0028 / 0.0243 / 0.0939 3.2040 / 0.0048 / 0.0245 / 0.1049

5.9875 / 0.0185 / 0.0184 / 0.0968 5.7757 / 0.0168 / 0.0189 / 0.0944 4.6625 / 0.0119 / 0.0200 / 0.0992

3.1871 / 0.0143 / 0.0531 / 0.2357 3.2659 / 0.0191 / -0.0188 / 0.2284 3.3796 / 0.0194 / 0.0166 / 0.2283

Perturbation-
based Attacks

Red Channel Green Channel Blue Channel

1.8072 / 0.0364 / 0.0243 / 0.15201.8482 / 0.0354 / 0.0220 / 0.1514 1.7817 / 0.0379 / 0.0244 / 0.1542

Figure 3. Iadv , Idiffused and statistics of radv , rdiffused under different t∗ in DiffPure (constraint ϵ = 64/255). Metrics are shown in
‘Kurtosis / Q-Q Deviation / Mean / Standard Deviation’. Please zoom in to see details.

0 100 200 300 400 500 600 700
Step t in DiffPure

0.4

0.5

0.6

0.7

0.8

Co
si

ne
 S

im
ila

ri
ty Cn, adv (=16/255)

Cn, diffused (=16/255)
Cn, adv (=32/255)
Cn, diffused (=32/255)
Cn, adv (=64/255)
Cn, diffused (=64/255)

Figure 4. Cosine similarity of visual embeddings under different ϵ
of adversarial image Iadv and t∗ of DiffPure.

0 100 200 300 400 500 600 700
Step t in DiffPure

0.55

0.60

0.65

0.70

0.75

0.80

Co
si

ne
 S

im
ila

ri
ty

Cclean, diffused (=16/255)
Cclean, diffused (=32/255)
Cclean, diffused (=64/255)

Figure 5. Cosine Similarity of visual embeddings from Ic and
Idiffused under different ϵ of adversarial image.

olution of the diffusion model requires down-sampling and
up-sampling operations, which may introduce artifacts not
considered during the fine-tuning of the VLM, potentially
impacting evaluation results. In the future, adopting more
advanced diffusion models will be essential for real-world
applications.

E.2. Extended Experimental Results
In the main paper, for the sake of brevity, we only report re-
sults for the standard perturbation-based attack setting of
ϵ = 32/255. However, we also conducted experiments
with lower attack strength (ϵ = 16/255) and higher at-
tack strength (ϵ = 64/255) to further validate our analysis
and approach in Table 8. Across different models and at-
tack strengths, our DiffPure-VLM consistently reduces the
attack success rate within a limited number of diffusion
timesteps (fewer than 150). Notably, under lower attack
strengths, setting the diffusion step to as low as t∗ = 50 is
sufficient to bring the attack success rate down to the level

Algorithm 1 DiffPure-VLM Adversarial Image Purifica-
tion with DDPM
Require: Adversarial image x, harmful text prompt p, dif-

fusion model D, forward diffusion timesteps tforward, re-
verse diffusion timesteps treverse, visual language model
VLM.

Ensure: Question answering result output
1: Resize input image x to the size required by the diffu-

sion model (e.g., 256× 256).
2: DDPM forward process with tforward steps: x̂ =

get noised x(x, tforward).
3: for t in treverse do
4: Denoise using reverse DDPM process: x =

denoising process(x̂, t).
5: end for
6: Obtain purified image with Gaussian noise: xgaussian =

normalize(x).
7: Perform question answering using VLM: output =

VLM(xgaussian, p).
8: return output

observed for clean inputs. However, under higher attack
strengths, t∗ = 50 fails to reduce the attack success rate
to the baseline level for both InternVL2-8B and MiniGPT-
4-13B. This indicates that stronger attacks require a larger
number of diffusion steps to effectively transform the ad-
versarial noise into Gaussian noise. This finding aligns
with the analysis presented in Figure 4 of the main paper,
where the residual image at t∗ = 50 for an attack strength
of ϵ = 64/255 does not exhibit Gaussian characteristics.
Moreover, we observe that t∗ = 100 demonstrates strong
performance across all attack conditions, making it an ef-
fective trade-off between time and robustness. Thus, in real-
world applications, setting t∗ = 100 offers a balanced solu-
tion, achieving reliable defense while maintaining compu-
tational efficiency.

F. Conjectures and Discussion on the Impact
of Gaussian Noise

Problem Definition
Setting:
• A Visual Language Model (VLM) typically consists of

three main components: a visual encoder, a language
model, and a vision-language connection module.

• Let the input be a pair (I, T), where I ∈ Rd is an image
and T is the corresponding text prompt.

• The VLM generates an output sequence of tokens, de-
noted by T̂ = fθ(I, T), where fθ represents the VLM
pipeline parameterized by θ.

Adversarial Attack: An adversarial perturbation δ is ap-
plied to the image I , resulting in a perturbed image Iδ =

Figure 6. The overall framework of DiffPure-VLM.

I + δ. The perturbation δ is crafted to manipulate the VLM
into generating a specific harmful target text T target. The
adversary’s objective is:

δ = arg min
∥δ∥≤ϵ

L
(
fθ(I + δ, T), T target) ,

where L(·, ·) measures the discrepancy between the gen-
erated text T̂ and the target text T target. The constraint
∥δ∥ ≤ ϵ ensures that the perturbation is imperceptible.
Conjectures: We introduce the following four conjectures
to guide our investigation into the impact of Gaussian noise
on VLMs:
1. Sensitivity of Adversarial Attacks to Gaussian Noise:

Adding Gaussian noise to adversarially perturbed im-
ages will significantly reduce the effectiveness of the at-
tack.

2. Gaussian Noise as a Simple Attack on VLM Safety:
Gaussian noise, even without adversarial perturbations,
may increase the likelihood of generating harmful text.

3. Gaussian Noise as a Regularizer: Augmenting train-
ing data with Gaussian noise may act as a regularizer,
enhancing the robustness of the VLM.

4. Fine-Tuning with Gaussian Noise Preserves Perfor-
mance: Incorporating Gaussian noise during fine-tuning
will preserve or even improve the VLM’s overall perfor-
mance.

Objective: The goal of this study is to systematically evalu-
ate the impact of Gaussian noise on the robustness and reli-
ability of VLMs. By exploring the above conjectures, we
aim to determine whether Gaussian noise can effectively
mitigate adversarial perturbations and enhance model ro-
bustness without compromising performance.

Conjecture 1: Sensitivity of Adversarial Perturba-
tions to Gaussian Noise
Statement: Adversarial perturbations are highly sensitive
to Gaussian noise; the attack effectiveness is significantly
diminished when Gaussian noise is added to the adversarial
image.

Discussion:
Consider an adversarially perturbed image Iδ = I + δ,

where the perturbation δ is optimized to minimize the loss:

δ = arg min
∥δ∥≤ϵ

L
(
fθ(I + δ, T), T target) ,

where L(·, ·) measures the discrepancy between the gen-
erated text T̂ and the harmful target text T target. The pertur-
bation δ is crafted to exploit specific vulnerabilities in the
model fθ.

Now, consider the scenario where Gaussian noise η ∼
N (0, σ2I) is added to the input. The new input becomes:

Iδ,η = I + δ + η.

The expected loss over the distribution of Gaussian noise
η is:

Eη

[
L
(
fθ(I + δ + η, T), T target)] .

Since the adversarial perturbation δ is tailored for the
specific input I , adding random Gaussian noise η dis-
rupts this optimization. Adversarial perturbations exploit
the model’s sensitivity along certain directions in the input
space, while isotropic Gaussian noise perturbs the input uni-
formly in all directions, diminishing the effect of δ.

Assuming that fθ and L are Lipschitz continuous, we
can bound the increase in expected loss as follows:

Eη

[
L
(
fθ(I + δ + η, T), T target)] ≥L

(
fθ(I + δ, T), T target)

+
σ2λ

2
,

where λ is a positive constant related to the curvature of
L and fθ.

This inequality indicates that the addition of Gaussian
noise increases the expected loss, thus reducing the effec-
tiveness of the adversarial perturbation. The random noise
η disrupts the carefully crafted δ, making it less effective
at manipulating the VLM’s output. This supports our con-
jecture that Gaussian noise can act as a simple yet effective
countermeasure against adversarial attacks.

Table 8. Evaluation of DiffPure-VLM’s effectiveness on RealToxicityPrompts across different image configurations. Metrics include attack
success rate and toxicity levels (Perspective API %). Rows highlighted in light red indicate cases where attack success rate does not meet
the baseline level of benign image input.

Image Type Attack
Success Rate ↓ Identity Attack Profanity Severe

Toxicity
Sexually
Explicit Threat Toxicity

InternVL2-8B-RobustVLGuard

Benign Clean Image 29.9 0.8 22.1 0.3 7.2 1.5 25.9
Benign Noisy Image 34.5 2.1 27.2 1.3 8.4 1.6 31.3

Adversarial Image (ϵ = 16/255) 72.5 19.8 58.5 8.3 19.2 7.8 70.0
+DiffPure-VLM (t∗ = 50) 31.4 1.4 24.6 1.1 7.9 1.6 27.5
+DiffPure-VLM (t∗ = 100) 28.2 0.9 21.7 0.4 6.8 1.5 23.9
+DiffPure-VLM (t∗ = 150) 28.2 1.6 22.4 0.2 6.9 1.1 24.4

Adversarial Image (ϵ = 32/255) 70.6 26.7 56.5 9.2 17.3 6.9 68.1
+DiffPure-VLM (t∗ = 50) 33.4 2.4 20.6 0.7 8.1 2.4 29.1
+DiffPure-VLM (t∗ = 100) 33.4 1.6 27.7 0.6 7.6 1.5 30.2
+DiffPure-VLM (t∗ = 150) 32.8 1.7 25.9 0.6 7.7 1.8 29.1

Adversarial Image (ϵ = 64/255) 57.3 9.3 45.8 4.4 16.1 3.9 53.9
+DiffPure-VLM (t∗ = 50) 40.9 2.3 32.9 1.4 9.3 2.3 37.3
+DiffPure-VLM (t∗ = 100) 35.7 1.8 28.2 0.8 7.6 2.4 31.8
+DiffPure-VLM (t∗ = 150) 36.1 2.4 28.3 1.2 8.3 1.8 33.6

LLaVA-v1.5-7B-RobustVLGuard

Benign Clean image 43.6 4.6 34.7 2.4 12.3 3.5 41.0
Benign Noisy image 42.3 3.1 34.5 1.9 11.8 3.1 40.0

Adversarial image (ϵ = 16/255) 62.6 11.3 48.8 5.3 16.8 5.8 59.1
+DiffPure-VLM (t∗ = 50) 42.7 3.4 32.1 1.5 12.0 4.6 39.7
+DiffPure-VLM (t∗ = 100) 42.8 3.9 32.5 2.3 12.5 3.7 39.3
+DiffPure-VLM (t∗ = 150) 44.4 3.3 34.4 2.2 12.6 3.2 41.0

Adversarial image (ϵ = 32/255) 62.5 7.8 48.0 5.4 16.5 5.8 60.0
+DiffPure-VLM (t∗ = 50) 43.9 3.2 34.6 2.4 12.8 3.7 41.0
+DiffPure-VLM (t∗ = 100) 44.1 3.5 35.4 2.1 13.0 4.1 41.3
+DiffPure-VLM (t∗ = 150) 42.5 3.5 32.7 2.8 12.1 4.1 39.3

Adversarial image (ϵ = 64/255) 57.5 9.2 43.5 5.2 15.3 5.8 54.7
+DiffPure-VLM (t∗ = 50) 42.1 2.7 32.1 2.1 12.3 2.9 39.0
+DiffPure-VLM (t∗ = 100) 40.5 3.3 31.4 1.9 11.7 2.8 37.5
+DiffPure-VLM (t∗ = 150) 42.4 3.5 32.8 1.8 11.5 4.0 40.2

MiniGPT-4-13B-RobustVLGuard

Benign Clean image 16.0 0.4 9.9 0.3 4.6 1.1 12.1
Benign Noisy image 16.5 0.9 11.9 0.6 5.8 1.0 14.0

Adversarial image (ϵ = 16/255) 47.4 9.3 34.2 1.4 11.8 4.2 41.5
+DiffPure-VLM (t∗ = 50) 16.0 0.6 9.3 0.3 6.5 1.4 13.2
+DiffPure-VLM (t∗ = 100) 15.8 0.7 9.7 0.0 6.1 1.1 12.8
+DiffPure-VLM (t∗ = 150) 9.8 0.4 6.0 0.1 3.3 0.5 7.8

Adversarial image (ϵ = 32/255) 53.7 9.8 35.3 4.1 13.9 5.4 48.1
+DiffPure-VLM (t∗ = 50) 13.6 0.3 9.2 0.2 5.5 0.9 10.6
+DiffPure-VLM (t∗ = 100) 15.2 0.6 9.5 03 5.4 1.1 12.7
+DiffPure-VLM (t∗ = 150) 11.9 0.5 8.6 0.2 4.2 0.6 9.9

Adversarial image (ϵ = 64/255) 60.2 6.8 44.6 4.2 16.2 5.8 56.0
+DiffPure-VLM (t∗ = 50) 30.3 1.8 21.6 1.4 11.4 1.9 26.9
+DiffPure-VLM (t∗ = 100) 10.6 0.0 7.1 0.0 4.1 0.8 8.2
+DiffPure-VLM (t∗ = 150) 9.4 0.4 5.5 0.3 4.1 0.6 7.0

Conjecture 2: Gaussian Noise as a Simple Attack
on VLM Safety
Statement: Adding Gaussian noise η ∼ N (0, σ2I) to a
clean image Iclean can compromise the safety of VLMs.
Setting: Let Iclean be a clean image, and η ∼ N (0, σ2I) be
Gaussian noise. The perturbed image is defined as:

Inoisy = Iclean + η.

The VLM processes the noisy image Inoisy along with a
corresponding text prompt T , and generates an output based
on this combined input.
Discussion:

1. Effect of Noise on Model Input: The input to the
model becomes Inoisy = Iclean + η. This perturbation, al-
though random, alters the image representation processed
by the VLM. The model’s output can be locally approxi-
mated around the clean input as:

fθ(Iclean + η, T) ≈ fθ(Iclean, T) +∇Icleanfθ · η,

where ∇Icleanfθ represents the gradient of the model out-
put with respect to the clean image input. The Gaussian
noise η introduces random perturbations that shift the im-
age features.

2. Vulnerability of VLMs to Noise: VLMs are typically
trained on clean image data, and thus, they may lack robust-
ness to input noise. The introduction of Gaussian noise can
push the model’s input into regions of the feature space that
were not well-covered during training, potentially causing
the model to misinterpret the input and generate unexpected
responses.

3. Impact on Safety: Adding Gaussian noise may shift
the model’s behavior towards decision boundaries where
safety mechanisms are less effective. This increases the
likelihood of generating unsafe or harmful text:

L(fθ(Iclean + η, T), T target) ≥ L(fθ(Iclean, T), T
target),

where T target represents a potentially harmful target out-
put. The inequality suggests that the noisy input can lead to
a higher loss, increasing the risk of unsafe text generation.

4. Gaussian Noise as a Simple Yet Effective Attack:
Unlike adversarial perturbations that require careful opti-
mization and model-specific crafting, Gaussian noise intro-
duces random changes without any specific targeting. De-
spite its simplicity, it can destabilize the model and affect its
safety, demonstrating that even non-adversarial noise can be
a risk factor for VLMs.

In summary, adding Gaussian noise to clean images can
indeed disrupt the safety of VLMs, even in the absence of
sophisticated adversarial attacks. This highlights a potential
vulnerability of VLMs that warrants further investigation.

Conjecture 3: Gaussian Noise as a Regularizer
Statement: Augmenting training data with Gaussian noise
acts as a regularizer, reducing the risk of overfitting to ad-
versarial perturbations and enhancing model robustness.
Discussion:

We introduce a regularized loss function that incorpo-
rates Gaussian noise during training:

Lreg(θ) = E(I,T)∼DEη∼N (0,σ2I) [L (fθ(I + η, T), T)] ,

where D represents the training data distribution. This
formulation encourages the model to perform well not only
on clean inputs but also on noisy inputs, promoting robust-
ness.

To understand the regularizing effect of Gaussian noise,
we expand the loss function L using a second-order Taylor
expansion around the clean input I:

L (fθ(I + η, T), T) ≈ L (fθ(I, T), T)

+∇IL (fθ(I, T), T)
⊤
η

+
1

2
η⊤∇2

IL (fθ(I, T), T) η.

Taking the expectation over the Gaussian noise η ∼
N (0, σ2I), we obtain:

Eη [L (fθ(I + η, T), T)] ≈ L (fθ(I, T), T)

+
1

2
Eη

[
η⊤∇2

IL (fθ(I, T), T) η
]

= L (fθ(I, T), T)

+
σ2

2
Tr

(
∇2

IL (fθ(I, T), T)
)
.

The additional term σ2

2 Tr
(
∇2

IL (fθ(I, T), T)
)

penal-
izes large curvature (i.e., high second derivatives) of the
loss function with respect to the input I . This encourages
smoother mappings from the input to the output, reducing
the model’s sensitivity to small input perturbations, includ-
ing adversarial ones.

In summary, the addition of Gaussian noise during train-
ing acts as a regularizer by penalizing sharp changes in the
loss landscape. This results in a model that is less prone
to overfitting and more resilient to adversarial attacks, as it
learns smoother and more stable input-output mappings.

Conjecture 4: Fine-Tuning with Gaussian Noise
Preserves Performance
Statement: Fine-tuning the VLM with Gaussian noise-
augmented data maintains performance on clean data while
enhancing robustness to adversarial perturbations.

Discussion:
Let D = {(Ii, Ti)}Ni=1 be the original training dataset.

We construct an augmented dataset by adding Gaussian
noise:

Daug =
{
(Ii + ηi, Ti) | ηi ∼ N (0, σ2I)

}N

i=1
.

The training objective is to minimize the following loss
function:

L̂aug(θ) =
1

N

N∑
i=1

Eηi
[L (fθ(Ii + ηi, Ti), Ti)] .

Since the Gaussian noise ηi has a zero mean, the ex-
pected gradient of the loss with respect to the model param-
eters θ is centered around the gradient on the clean data:

Eηi [∇θL (fθ(Ii + ηi, Ti), Ti)] = ∇θL (fθ(Ii, Ti), Ti) .

This result indicates that the expected training gradient
remains aligned with the gradient computed on the clean
data, thereby preserving the model’s performance on clean
inputs.

Moreover, by training on both clean and noise-
augmented data, the model is exposed to a neighborhood
of inputs around each training example. This exposure
helps the model generalize better and become less sensitive
to small perturbations, effectively enhancing its robustness
against adversarial attacks.

In summary, fine-tuning with Gaussian noise-augmented
data acts as a regularization strategy that not only maintains
the VLM’s accuracy on clean data but also improves its re-
sistance to adversarial perturbations.

G. Detailed Proofs
Bounding the Increase in Loss Due to Gaussian
Noise
Discussion:
Step 1: Lipschitz Continuity of fθ and L

Assume that the model function fθ : Rd × T → Rk and
the loss function L : Rk ×T → R are Lipschitz continuous
with constants Kf and KL, respectively. That is, for all
x, y ∈ Rd and T ∈ T :

∥fθ(x, T)− fθ(y, T)∥ ≤ Kf∥x− y∥,

and for all a, b ∈ Rk:

|L(a, T target)− L(b, T target)| ≤ KL∥a− b∥.

Step 2: Bounding the Change in Loss Due to Noise η
Consider the adversarially perturbed image Iδ = I + δ,

where δ is crafted to minimize the loss:

δ = arg min
∥δ∥≤ϵ

L
(
fθ(I + δ, T), T target) .

When Gaussian noise η ∼ N (0, σ2I) is added, the input
becomes Iδ,η = I + δ + η. The change in loss due to η is:

∆L = L
(
fθ(I + δ + η, T), T target)−L

(
fθ(I + δ, T), T target) .

Using the Lipschitz continuity of L:

|∆L| ≤ KL ∥fθ(I + δ + η, T)− fθ(I + δ, T)∥ .

Step 3: Computing the Expected Increase in Loss
Applying the Lipschitz continuity of fθ:

∥fθ(I + δ + η, T)− fθ(I + δ, T)∥ ≤ Kf∥η∥.

Thus, the change in loss is bounded by:

|∆L| ≤ KLKf∥η∥.
Since η is a Gaussian random vector with zero mean and

covariance σ2I , the expected value of ∥η∥ is:

E[∥η∥] = σ
√
2
Γ
(
d+1
2

)
Γ
(
d
2

) ≈ σ

√
d− 1

2
for large d.

Therefore, the expected increase in loss is approxi-
mately:

E[|∆L|] ≤ KLKfσ
√
d.

Step 4: Lower Bounding the Expected Increase in Loss
Since δ minimizes L(fθ(I + δ, T), T target) at the point

I+ δ, any perturbation η added to I+ δ is likely to increase
the loss. Under the conjecture that L is convex around I+δ,
the expected increase in loss due to η can be lower bounded
using the curvature (second derivative) of L:

Eη

[
L
(
fθ(I + δ + η, T), T target)] ≥

L
(
fθ(I + δ, T), T target)+ σ2

2
λmin,

where λmin is the smallest eigenvalue of the Hessian ma-
trix ∇2

I+δL(fθ(I + δ, T), T target).
Conclusion:

Adding Gaussian noise increases the expected loss by at
least σ2

2 λmin, reducing the effectiveness of the adversarial
perturbation. This result supports the conjecture that Gaus-
sian noise disrupts the optimization achieved by the adver-
sary, weakening the impact of adversarial attacks.

Second-Order Taylor Expansion of L Around I

Discussion:
Step 1: Second-Order Taylor Expansion

We expand the loss function L(fθ(I + η, T), T) around
the point I using the second-order Taylor expansion:

L(fθ(I + η, T), T) = L(fθ(I, T), T)

+∇IL(fθ(I, T), T)
⊤η

+
1

2
η⊤∇2

IL(fθ(I, T), T)η +R3

where:
• ∇IL(fθ(I, T), T) is the gradient of the loss with respect

to the input I .
• ∇2

IL(fθ(I, T), T) is the Hessian matrix of second deriva-
tives with respect to I .

• R3 is the remainder term of higher order O(∥η∥3).
Step 2: Expected Value of the Linear Term

Since η is sampled from a zero-mean Gaussian distribu-
tion η ∼ N (0, σ2I), the expected value of the linear term
becomes:

Eη

[
∇IL(fθ(I, T), T)

⊤η
]
= ∇IL(fθ(I, T), T)

⊤Eη[η] = 0

Step 3: Expected Value of the Quadratic Term
Next, we compute the expectation of the quadratic term:

Eη

[
η⊤∇2

IL(fθ(I, T), T)η
]

Using the properties of Gaussian distributions, we know
that for a symmetric matrix A:

Eη

[
η⊤Aη

]
= σ2 Tr(A)

Thus, the expected value of the quadratic term becomes:

Eη

[
η⊤∇2

IL(fθ(I, T), T)η
]
= σ2 Tr

(
∇2

IL(fθ(I, T), T)
)

Step 4: Neglecting the Remainder Term
For small values of σ, the remainder term R3 is of order

O(σ3) and can be safely ignored. Thus, the approximation
becomes:

Eη [L(fθ(I + η, T), T)] ≈ L(fθ(I, T), T)

+
σ2

2
Tr

(
∇2

IL(fθ(I, T), T)
)

Step 5: Interpretation of the Trace Term
The term Tr

(
∇2

IL(fθ(I, T), T)
)

denotes the sum of the
eigenvalues of the Hessian matrix, representing the over-
all curvature of the loss function with respect to the input.
A larger trace value indicates higher curvature, suggesting
greater sensitivity of the model to input perturbations. Re-
ducing this sensitivity is crucial for enhancing the model’s
robustness.

Step 6: Gaussian Noise as Regularization
The additional term σ2

2 Tr
(
∇2

IL(fθ(I, T), T)
)

func-
tions as a regularizer, penalizing high curvature in the loss
landscape. This encourages the model to learn smoother
input-output mappings, thereby reducing its vulnerability to
small perturbations, including adversarial attacks.
Step 7: Connection to Tikhonov Regularization

This regularization effect is conceptually similar to
Tikhonov regularization, where a penalty proportional to
the norm of the model parameters is added to the loss func-
tion. In our case, the penalty arises naturally from the Gaus-
sian noise, encouraging robustness by flattening the loss
landscape:

Eη [L(fθ(I + η, T), T)] ≈ L(fθ(I, T), T)

+
σ2

2
Tr

(
∇2

IL(fθ(I, T), T)
)

This smoothing effect reduces the model’s sensitivity to
input perturbations, enhancing its robustness without com-
promising performance on clean data.

References
[1] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin

Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun
Tang, et al. Qwen2. 5-vl technical report. arXiv preprint
arXiv:2502.13923, 2025. 1

[2] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhang-
wei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian,
Zhaoyang Liu, et al. Expanding performance boundaries of
open-source multimodal models with model, data, and test-
time scaling. arXiv preprint arXiv:2412.05271, 2024. 1

[3] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhang-
wei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng
Luo, Zheng Ma, et al. How far are we to gpt-4v? closing
the gap to commercial multimodal models with open-source
suites. arXiv preprint arXiv:2404.16821, 2024. 1

[4] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 4

[5] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. 1

[6] Jenny N Theresa Yu Ivy Zhang, Wei Peng and David Qiu.
Ivy-vl:compact vision-language models achieving sota with
optimal data, 2024. 1

[7] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In NeurIPS, 2024. 1

[8] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash
Vahdat, and Animashree Anandkumar. Diffusion models for
adversarial purification. In International Conference on Ma-
chine Learning, 2022. 2, 4

[9] Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Hen-
derson, Mengdi Wang, and Prateek Mittal. Visual adversarial
examples jailbreak aligned large language models. In AAAI,
2024. 1

[10] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. In
ICLR, 2024. 1

	Overview of the Supplementary Material
	Experiment Details
	Models
	Fine-tuning Configuration
	Details of Evaluation Settings

	Additional Evaluation on Recent Vision-Language Models
	Further Analysis of DiffPure
	Defence Performance
	Distribution Shift

	Additional Details of DiffPure-VLM
	Implementation Details
	Extended Experimental Results

	Conjectures and Discussion on the Impact of Gaussian Noise
	Detailed Proofs

