
Semantic Discrepancy-aware Detector for Image Forgery Identification

Supplementary Material

A. Statistical analysis of feature values from
detectors

Previous works have validated the effectiveness of the
CLIP model in the forgery detection task. Unlike conven-
tional detection models, CLIP distinguishes itself by jointly
learning from both visual and textual modalities, enabling
it to understand and align images with natural language.
This enables CLIP to better understand the semantic rela-
tionships between images and text, allowing for more nu-
anced detection of subtle forgery traces. In contrast, tra-
ditional detectors typically focus exclusively on the visual
features of the images themselves, without leveraging ad-
ditional semantic conceptual information. We attribute our
preliminary findings to the influence of conceptual seman-
tic factors, which help to distinguish real from fake images
more effectively.

In Section 2, we briefly introduce the differences be-
tween the features extracted by CNNSpot [51] and CLIP
[34]. In this section, we provide a more detailed discus-
sion of these differences and investigate the characteristics
of these differences and the reasons behind them. To fur-
ther validate the distinguishing role of concepts in differen-
tiating real and fake images, we observe the feature spaces
of different categories of real and fake images. Both sets
of features originate from the inputs of the detectors’ final
fully connected (FC) layers. This setup enables us to ex-
plore the distinction between concept-related features and
those typically extracted by general detectors.

As illustrated in Fig. 14, we observe a notable differ-
ence in how real and fake images are represented in the
visual semantic concept space. The gap between real and
fake images in CLIP space is more pronounced across vari-
ous categories, suggesting that semantic concepts help sepa-
rate these two types of images more effectively. In contrast,
in the feature space of CNNSpot, the distinction between
real and fake images becomes much less obvious and more
uniform, indicating that the learned features tend to exhibit
monotonic patterns, which may lead to overfitting and lim-
iting the model’s ability to generalize to unseen data. This
highlights the importance of incorporating conceptual se-
mantic understanding into the feature extraction process.

From these observations, we conclude that the use of
concept-based features can significantly alleviate the prob-
lem of overfitting and improve a model’s ability to general-
ize to unseen generative models.

B. Analysis of Semantic Description Granular-
ity in FatFormer

In the introduction, we point out that the soft prompts
based on simple [CLASS] embeddings of FatFormer have
an intrinsic limitation in their semantic description granu-
larity. This concern arises from our observation that Fat-
Former achieves a significantly lower raccm compared to
UnivFD. The raccm is shown in Table 5. This indicates
that, when faced with real images, FatFormer is more likely
to misclassify them as fake images. In more extreme terms,
compared to its backbone, FatFormer appears to have lost
the ability to recognize authentic images, which is clearly
an anomalous behavior.

Our intuitive explanation is that the coarse-grained soft
prompts used in FatFormer weaken its ability to perceive
varying visual semantic details in real images. To validate
this hypothesis, we randomly sampled 5,000 pairs of images
and computed the cosine similarity between them based on
the output vectors of FatFormer’s text encoder and the final-
layer features of UniVFD’s image encoder. As shown in
Fig. 11 and Fig. 10, the cosine similarity scores for UnivFD
show a wider range of variation compared to FatFormer’s.
It indicates that FatFormer’s soft prompts fail to distinguish
semantic differences between images, indicating a signifi-
cant decline in semantic discrimination capability.

Furthermore, we compared the semantic similarity be-
tween real images that were misclassified as fake and those
that were correctly classified. As shown in Fig. 9, despite
the higher semantic similarity among real images, the Uni-
vFD is still able to correctly determine their authenticity. In
contrast, FatFormer, while eliminating semantic informa-
tion interference, fails to make accurate authenticity judg-
ments.

These findings suggest that although forgery-adaptive
mechanisms improve FatFormer’s sensitivity to forgery
traces, the lack of adequate semantic-guided information
provided by the soft prompts hinders the model’s general-
ization ability in real-world scenarios.

C. Training details
In this section, we provide the details regarding the train-

ing process of our work. We use the official code repository
provided by [34]. We train the CLIP:ViT variant of this
baseline with Blur and JPEG augmentations applied with a
probability of 0.5. The network is trained with a batch size
of 32 and a learning rate of 1 × 10−4. The random seed
is set to 46. For the loss function, the hyper-parameters λ1

and λ2 are set to 1
9 and 1

3 , respectively. During testing, no
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Figure 8. Value statistics of extracted features. We compare the input features from the last FC layer of CNNSpot [51] and CLIP [34],
both of which are fed with ProGAN [41] data. Three classes from ProGAN’s testing data are considered: cat, dog, and person. We also
present the results for data from all classes.

Figure 9. Semantic similarity comparison of real images. Inside the red dashed box, the source real images are correctly classified, while
the target real images are misclassified. Inside the blue dashed box, both the source real images and the target real images are correctly
classified.

Figure 10. Semantic similarity histogram of UnivFD. The data
is primarily concentrated in the cosine similarity range of 0.85 to
0.90, with the overall data falling within the range of 0.582 to
0.988.

Figure 11. Semantic similarity histogram of FatFormer. The
data is primarily concentrated in the cosine similarity range of
0.9344 to 0.9348, with the overall data falling within the range
of 0.9336 to 0.9351.



Blur or JPEG augmentation is applied. Lastly, when train-
ing our classifier, we make use of Blur + JPEG data aug-
mentations, any real or fake image is first augmented before
being passed to the CLIP:ViT encoder (φ).

D. Effect of sampling rate δ of SDL
In this section, we investigate the effect of the parame-

ter δ on forgery detection performance. We set δ to vari-
ous values of 1

500 ,
1

1000 ,
1

2000 ,
1

4000 ,
1

5000 to explore how the
number of sampled tokens impacts the detection task. No-
tably, our sampled dataset is drawn from the entire training
set in [34]. Despite the large size of the training set, the
number of sampled tokens remains below expectations —
some segments contain no patch tokens at all.

Intuitively, increasing the number of tokens should al-
low the model to better reflect the true distribution of vi-
sual semantic concepts, as more tokens provide a more
comprehensive representation of the whole image. As
shown in Fig. 12, when δ changes from 1

500 to 1
1000 , al-

though the change in Average Precision (APm) is not signif-
icantly large, there is a noticeable improvement in Accuracy
(ACCm), demonstrating that the additional tokens help the
model better differentiate between real and fake images.

Beyond this point, as δ continues to increase, the changes
in both APm and ACCm increase gradually, suggesting that
after a certain threshold, increasing the number of sampled
tokens yields diminishing returns in performance. These
findings underscore the effectiveness of the sampled tokens
in enhancing the model’s ability to detect forgery traces.

Moreover, even with a relatively small number of tokens,
the model achieves significant performance improvements.
This characteristic is especially valuable as it reduces both
computational costs and memory usage, making it a more
efficient solution for real-world applications. In conclusion,
this finding highlights that our method is both effective in
detecting real and fake images and computationally effi-
cient, even with fewer tokens.

E. Robustness
In order to evade a fake detection system, an attacker

may apply certain low-level post-processing operations to
the fake images. To evaluate the robustness of our classifier
against such operations, we follow prior work and assess its
performance under different post-processing conditions. As
shown in Fig. 13, our method demonstrates general robust-
ness to both blur and JPEG compression artifacts compared
to the baseline [34].

It is worth noting that as the Gaussian blur sigma value
changes, the average precision (AP) for different generative
models consistently remains above 75%, with the exception
of the SAN model. This indicates that our method is quite
robust to Gaussian blur, effectively detecting forgery traces

even under varying levels of blur. In particular, the AP re-
mains stable across most generative models, suggesting that
our approach maintains strong performance in the presence
of noise or degradation typically introduced by Gaussian
blur. However, for the SAN model, a noticeable drop in AP
suggests that certain models, such as SAN, might be more
sensitive to this type of distortion.

On the other hand, when the JPEG compression quality
is varied, the AP for all forgery models remains consistently
above 80%, indicating that our method is highly resistant to
JPEG compression artifacts. This is a strong indication of
the model’s ability to maintain accuracy even under com-
mon image compression techniques that often degrade the
quality of forged images. Notably, our models exhibit min-
imal degradation in AP, which demonstrates their capabil-
ity to accurately distinguish between real and fake images,
even when compression artifacts are present. In contrast,
models that are not robust to such distortions may experi-
ence significant drops in AP, reflecting their vulnerability to
such post-processing operations.

F. Accuracy breakdown of real and fake
classes

Lastly, we break down the performance of different
methods into performance on real ( Table 5) and fake im-
ages ( Table 6) associated with different generative models.
This breakdown helps us understand the specific ways in
which a detection method may fail. In particular, we ob-
serve that an image-level classifier, such as CNNSpot [51],
works well in detecting real and fake images when they be-
long to the GAN domain. However, when tested on images
from latent diffusion models, the network tends to classify
almost all images as real. Consequently, while the classifi-
cation accuracy on real images remains high, the accuracy
on fake images drops drastically.

In contrast to other models, our method strikes a remark-
able balance between performance on real and fake im-
ages, as evidenced by the results in Table 6 and Table 5,
where the fake image classification accuracy (faccm) and
real image classification accuracy (raccm) are 93.16% and
94.06%, respectively. This indicates that our model excels
at distinguishing between real and fake images. Further-
more, our model has learned a feature space that effectively
differentiates between these two categories. This ability to
maintain consistent performance across both real and fake
images highlights the robustness and effectiveness of our
model in real-world applications. Our approach demon-
strates its capability to detect subtle forgery traces, irrespec-
tive of the generative model used to create the fake images.



Methods Ref

GAN
Deep

fakes

Low level Perceptual loss

Guided

LDM Glide

Dalle Avg-accPro- Cycle- Big- Style- Gau- Star-
SITD SAN CRN IMLE

200 200 100 100 50 100

GAN GAN GAN GAN GAN GAN Steps w/cfg Steps 27 27 10

CNN-Spot CVPR2020 100.0 98.64 99.05 99.95 99.40 99.30 99.45 100.0 100.0 99.22 99.22 99.14 99.61 99.61 99.61 99.61 99.61 99.61 99.61 99.50

PatchFor ECCV2020 95.30 65.56 61.35 85.95 49.88 75.83 89.21 43.48 47.24 12.25 12.25 61.34 84.86 84.86 84.86 84.86 84.86 84.86 84.86 68.08

Freq-spec WIFS2019 99.80 99.80 99.10 99.90 99.80 99.30 100.0 100.0 100.0 99.80 99.80 99.60 99.40 99.40 99.50 99.40 99.50 99.40 99.60 99.60

UnivFD CVPR2023 99.08 87.21 92.55 99.63 95.88 99.35 96.0 61.0 95.0 96.47 96.47 93.34 92.39 92.39 92.39 92.39 92.39 92.39 92.39 92.56

FatFormer CVPR2024 100 98.71 99.1 100 98.88 99.50 99.45 63.3 98.17 38.94 38.94 97.90 99.30 99.30 99.30 99.30 99.30 99.30 99.30 90.95

SDD 100.0 100.0 100.0 99.95 100.0 100.0 89.47 99.44 60.27 99.86 100.0 65.50 99.40 92.50 99.80 87.70 90.0 86.90 99.30 93.16

Table 5. Accuracy of detecting real images. For each generative model (column), we consider its corresponding real images and test
how frequently a classifier (row) correctly predicts it as real.

Methods Ref

GAN
Deep

fakes

Low level Perceptual loss

Guided

LDM Glide

Dalle Avg-accPro- Cycle- Big- Style- Gau- Star-
SITD SAN CRN IMLE

200 200 100 100 50 100

GAN GAN GAN GAN GAN GAN Steps w/cfg Steps 27 27 10

CNN-Spot CVPR2020 100.0 62.91 18.90 38.52 59.10 62.58 2.52 13.89 0.0 75.95 88.92 4.67 3.05 4.26 2.96 9.25 12.34 9.1 4.9 30.20

PatchFor ECCV2020 93.45 69.20 67.90 78.56 64.51 84.74 21.31 85.70 54.90 96.33 97.96 68.94 73.32 67.48 73.86 49.26 52.23 51.22 54.02 68.68

Freq-spec WIFS2019 0.20 100.0 1.80 0.0 0.90 100.0 0.0 0.0 0.4 1.30 0.50 0.40 1.30 1.40 1.10 3.90 3.30 1.30 0.50 11.50

UnivFD CVPR2023 100.0 99.77 84.7 61.88 98.34 98.6 73.0 82.0 27.0 42.06 61.94 48.77 90.2 51.65 90.2 85.7 88.94 87.77 70.55 75.95

FatFormer CVPR2024 99.78 100 99.90 94.24 99.98 100 87.83 99.44 37.90 100 100 54.10 97.80 97.90 90.40 89.30 89.90 89.00 98.10 90.78

SDD 99.75 91.52 93.40 90.59 96.92 98.35 96.16 67.78 96.35 92.95 92.95 93.60 96.70 96.70 96.70 96.70 96.70 96.70 96.70 94.06

Table 6. Accuracy of detecting fake images. For each generative model (column), we consider its corresponding fake images and test
how frequently a classifier (row) correctly predicts it as fake.

Figure 12. Performance of sampling rate δ of SDL.

Method APm Accm

BLIP 95.61 84 .46(VIT-L/16)
CLIP 98.52 93.61(VIT-L/14)

Table 7. Comparisons with different backbones on the UnivFD
dataset.

G. Comparisons with different backbones on
the UnivFD dataset.

To further investigate the role of semantic concepts, we
adopt the BLIP: VIT-L/16 as the backbone for forgery de-
tection. We hypothesize that BLIP provides stronger fine-
grained perception over the entire image, potentially mak-
ing it more suitable for capturing semantic-level inconsis-
tencies in manipulated content. Unlike CLIP, which primar-
ily focuses on contrastive learning, BLIP is trained using

vision-language pretraining tasks such as image-text match-
ing and image captioning, leading to improved vision-
language alignment and a more detailed semantic under-
standing. During the experiment, we observed that the num-
ber of patch tokens sampled by BLIP is fewer than that by
CLIP. This seems to suggest the incompleteness and inade-
quacy of BLIP’s visual semantic concept space.

However, as shown in Table 7, using CLIP as the back-
bone yields better performance than using BLIP, which
deepened our understanding of the semantic concept space.
Despite its stronger alignment at the image-caption level,
BLIP appears to have a less comprehensive and diverse con-
cept space compared to CLIP, resulting in concept-forgery
misalignment.

We attribute this limitation primarily to the scale and di-
versity of pretraining data. BLIP is trained on 129M sam-
ples, while CLIP uses 400M samples. The broader and
more diverse supervision in CLIP likely equips it with a
more robust and generalizable semantic embedding space,
especially under open-world or adversarial conditions such
as image forgery. Furthermore, CLIP’s contrastive training
may emphasize discriminative concept boundaries, which
could be inherently more beneficial for tasks requiring
semantic-level anomaly detection.

In summary, although BLIP possesses advantages in
fine-grained alignment and descriptive representation, its
current pretraining scale and objectives may limit its effec-
tiveness in tasks like forgery detection, where broad seman-
tic coverage and discriminative representation are critical.



Figure 13. Robustness to different image processing operations. Both our detector and the trained baseline [34] demonstrate general
robustness to these artifacts, but our performance is notably superior on unseen models.

Figure 14. The visualization of attention on dataset [57]. The first row displays the original image, the second row shows the corresponding
mask, and the third row presents the generated image within the masked region.

H. Effect of SDD on the tampered dataset[56]

Beyond simply classifying images as real or generated,
numerous research efforts have sought to localize the edited
regions within the tampered images. Since we emphasize
the role of CFDL in localizing semantically relevant forgery
regions in this work, we try to apply our pretrained model
trained on Stable Diffusion v1 images and random real
LAION images to detect manipulated regions in tampered
images. Clearly, identifying the authenticity of a whole im-
age becomes a significant challenge due to the increasing
proportion of real content within a given image. To further
investigate our model’s ability to tackle this challenge, we
conduct experiments on the MAGICBRUSH dataset [56].
MAGICBRUSH, finetuned by InstructPix2Pix, is a man-
ually annotated dataset for instruction-guided real image
editing that covers diverse scenarios: single-turn, multi-
turn, mask-provided, and mask-free editing.

We input tampered images into our model and obtain the

corresponding heatmaps using CAM. Although our model’s
forgery detection performance decreases on this dataset, by
analyzing the heatmaps alongside the mask images, we are
surprised to find that our model can still localize the manip-
ulated regions, albeit with limited accuracy. This demon-
strates the significant potential of our model in the field of
image forgery detection. In the future, we plan to further
explore methods for distinguishing fake images that have
been manipulated from real images.

I. More analysis of learned latent space

We argue that the indistinct boundaries observed in gen-
erative models arise from applying t-SNE across multiple
classes (i.e., semantic concepts), while the visualization it-
self is presented in a binary fashion (real vs. fake). To fur-
ther support this claim, we perform a more fine-grained t-
SNE analysis on the ProGAN test data (only the ProGAN
dataset provides explicit class labels for each sample. Other



Model FPS Time GPU us-
(ms) age(MB)

SDD 15 68 3555
-LORA 17 59 3252

-feature enhancement 16 61 3186
-LA 16 63 3510

Table 8. The computational cost of our model without different
modules on the UnivFD dataset. The prefix ‘-’ indicates the mod-
ule is removed.

(a) t-SNE based on seven categories (b) t-SNE based on two categories

Figure 15. The t-SNE visualization of semantic concepts with dif-
ferent numbers of categories, where the size of samples is equal.

generative models do not offer such semantic annotations)
using explicit class labels. In particular, we visualize the
feature distribution of samples from a combined subset of
categories — person, bird, train, chair, airplane, cat, and
potted plant — as well ajhjhs from the airplane category
alone.

As shown in Fig. 15, increasing concept diversity leads
to blurrier global boundaries in the t-SNE projection. Nev-
ertheless, real and fake samples within the same concept re-
main locally separable, suggesting that the observed struc-
ture is shaped by concept-aware organization.

J. The computational cost of our modules

We evaluate the computational cost introduced by our
key components: LoRA fine-tuning (LORA), feature en-
hancement, and reconstruction-based alignment (RA). As
shown in Table 8, all three modules introduce only a minor
increase in inference-time cost, maintaining the model’s ef-
ficiency while improving performance.

Specifically, the full model (SDD) runs at 15 FPS with
an average inference time of 68 ms and a GPU memory
footprint of 3555 MB. Removing LoRA slightly improves
FPS to 17 and reduces memory usage by approximately
300 MB, indicating that LoRA contributes a small compu-
tational cost. Removing feature enhancement results in the
lowest memory usage (3186 MB) and a slight FPS increase,
showing that multi-scale feature fusion is lightweight in
practice. Excluding the RA module also reduces the in-
ference time slightly, suggesting that reconstruction-based

alignment introduces minimal cost while contributing im-
portant semantic consistency.

Overall, these results confirm that our proposed compo-
nents are computationally efficient and practical for real-
world deployment scenarios, striking a favorable balance
between performance and resource consumption.


