
SparseMM: Head Sparsity Emerges from Visual Concept Responses in MLLMs

Supplementary Material

1. Implementation details
1.1. Implementation details about GQA
The models LLaVA-NeXT-Mistral-7B, and Qwen2-
VL-7B-Instruct are Grouped-Query Attention (GQA)
models, which differ markedly from conventional multi-
head attention (MHA) mechanisms in the computation
of attention. In a GQA model, the query state is of
shape (bs, seq len, num query heads, hidden dim),
while the key and value states, collectively form-
ing the KV cache, are of shape (bs, seq len,
num key value heads, hidden dim). During the
attention calculation, the key and value states are repeated

num query heads

num key value heads
= num key value group

times, thereby restoring the setup analogous to
MHA. Prior to computation, the sequence length
dimension and the query head dimension are inter-
changed, resulting in an attention score tensor of shape
(bs, num query heads, seq len, seq len). Subsequently,
when this tensor is combined with the value states, the output
is of shape (bs, num query heads, seq len, hidden dim)

From the above reasoning, it follows that we
obtain a visual head score matrix with dimensions
(layers, num query head). This is the origin of the score
distribution depicted in Fig. 2.

In practical scenarios involving the preservation of the
Key-Value cache, each key-value head is associated with
num key value group attention scores. The total attention
score for a given head is computed as the sum of the scores
of the corresponding group. This aggregate score is then
employed for the allocation of the budget for the Key-Value
cache.

1.2. Details on Evaluation Metrics
We adopt different evaluation metrics for different bench-
marks. For the DocVQA [6] benchmark, we employ the
ANLS metric. This metric evaluates the similarity between
the predicted answer and the ground truth by normalizing
the Levenshtein distance, thereby accommodating minor
variations in format and phrasing while maintaining a ro-
bust assessment of answer quality. For the OCRBench [4],
TextVQA [8], MMBench [3], GQA [1] and VQAv2 [2]
benchmark, we use accuracy as the primary metric. For
ChartQA [5] benchmark, we utilize the relaxed accuracy
metric. This measure provides partial credit for responses
that are close to the ground truth, thereby offering a more
nuanced perspective on model performance when outputs

Figure 1. More Visualization Results. Visual heads are able to
attend to the correct objects, whereas non-visual heads cannot.

are not perfectly correct but still largely informative. Finally,
for the TextCaps [7] dataset, we adopt the CIDEr metric.
CIDEr assesses the quality of generated captions by comput-
ing a weighted n-gram similarity between the candidate and
reference captions.

2. More Visualization
We conduct more visualization on the visual head in Fig. 1.
We use LLaVA-NeXT-Vicuna-7B model for the experiment.

3. More Analysis

Ablations on Budget Allocation Ratios. We conducted an
ablation study on the hyperparameter ρ. This study evaluated
the performance of three models on OCRBench, with a
budget of 256. The results are presented in Tab. 1. For the
LLaVA-NeXT-Vicuna-7B model, the ratio ρ = 0.1 achieved
the highest performance score of 0.522, outperforming other
ratios. Similarly, for the LLaVA-NeXT-Mistral-7B model,



Table 1. Ablation on Budget Allocation Ratios. We conducted an
ablation study on the hyperparameter ρ and the results indicated that
the performance is optimal when the ratio is set to 0.1. Therefore,
we use 0.1 as the default value in our experiments.

Ratio ρ 0 0.1 0.2 0.3 0.4 0.5 0.8 1.0

LLaVA-NeXT-Vicuna-7B 0.507 0.522 0.520 0.520 0.516 0.515 0.510 0.460
LLaVA-NeXT-Mistral-7B 0.145 0.519 0.517 0.514 0.514 0.518 0.506 0.451
Qwen2-VL-7B-Instruct 0.809 0.812 0.811 0.808 0.807 0.804 0.789 0.775

Table 2. Ablation on Cache Allocation Strategies. The results
demonstrate that each of the three cache components plays an
essential role and that none can be omitted without negatively
impacting overall performance.

Local Window Uniform-Based Score-Preferred MMBench

Cache Cache Cache 512 256 128 96 64 48

✓ ✗ ✗ 81.3 80.5 77.3 73.6 70.5 67.2
✓ ✓ ✗ 81.5 81.4 79.3 77.6 74.6 73.9
✓ ✓ ✓ 81.5 81.4 81.5 81.4 80.3 77.9

a ratio of 0.1 also resulted in a peak performance score of
0.519, which is significantly higher compared to the scores at
other ratios. While the Qwen2-VL-Instruct model exhibited
only a marginally higher score at ρ = 0.1 (0.812), this
still represents the highest performance across all tested
ratios. It is noteworthy that the Mistral model exhibits a
significant performance drop at a ratio of ρ = 0. This
observation suggests that relying entirely on visual head
score allocation of the cache budget can result in some heads
being unable to attend to any preceding input information.
Consequently, this underscores the necessity of assigning a
Uniform-Based cache to each head. By ensuring that each
head receives a guaranteed share of the cache resources, we
can prevent such performance degradation and enhance the
overall effectiveness of the model.

Ablation on Cache Allocation Strategies. We add an ab-
lation study on Qwen2-VL-7B-Instruct to investigate the
effectiveness of the three-part cache allocation mechanism.
As shown in Tab. 2, using only Local-Window Cache lim-
its context and causes larger drops with smaller budgets.
Combining Local-Window and Uniform-Based Caches lacks
head-level allocation and underperforms compared to our
SparseMM.

4. Numerical results
We present the numerical results of our main experimental
results for reference and further research.

References
[1] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury

Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa:
Training generalized multi-query transformer models from
multi-head checkpoints. arXiv preprint arXiv:2305.13245,
2023. 1

[2] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra,
and Devi Parikh. Making the v in vqa matter: Elevating the
role of image understanding in visual question answering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 6904–6913, 2017. 1

[3] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
Ziwei Liu, et al. Mmbench: Is your multi-modal model an
all-around player? arXiv preprint arXiv:2307.06281, 2023. 1

[4] Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng Yin,
Cheng-lin Liu, Lianwen Jin, and Xiang Bai. On the hidden
mystery of ocr in large multimodal models. arXiv preprint
arXiv:2305.07895, 2023. 1

[5] Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and
Enamul Hoque. Chartqa: A benchmark for question answering
about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022. 1

[6] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar.
Docvqa: A dataset for vqa on document images. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 2200–2209, 2021. 1

[7] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Aman-
preet Singh. Textcaps: a dataset for image captioning with
reading comprehension. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pages 742–758. Springer, 2020. 1

[8] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xin-
lei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach.
Towards vqa models that can read. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, pages 8317–8326, 2019. 1



Table 3. Numerical results of Fig. 4.

Benchmark Method LLaVA-NeXT-Vicuna-7B LLaVA-NeXT-Mistral-7B Qwen2-VL-7B-Instruct
2048 1024 512 256 128 64 2048 1024 512 256 128 64 2048 1024 512 256 128 64

DocVQA

SparseMM 0.6841 0.6837 0.6811 0.6784 0.6677 0.6377 0.6310 0.6272 0.6227 0.6163 0.6082 0.5756 0.9394 0.9392 0.9394 0.9345 0.9154 0.8493
SnapKV 0.6845 0.6807 0.6709 0.6430 0.5906 0.4977 0.6365 0.6306 0.6215 0.5971 0.5519 0.4726 0.9384 0.9340 0.9194 0.8798 0.8012 0.6652

PyramidKV 0.6843 0.6812 0.6714 0.6494 0.6030 0.4901 0.6363 0.6225 0.6076 0.5818 0.5425 0.4351 0.9391 0.9343 0.8816 0.8180 0.7394 0.5990
AdaKV 0.6839 0.6823 0.6753 0.6526 0.6064 0.5411 0.6358 0.6299 0.6174 0.5957 0.5592 0.4872 0.9392 0.9330 0.9201 0.8841 0.8121 0.6847
Random 0.6834 0.6791 0.6646 0.6340 0.5816 0.4868 0.6326 0.6217 0.5971 0.5592 0.4973 0.4206 0.9275 0.9015 0.8534 0.7681 0.6963 0.5102

OCRBench

SparseMM 0.519 0.522 0.528 0.523 0.501 0.478 0.523 0.518 0.512 0.519 0.507 0.462 0.821 0.822 0.821 0.812 0.795 0.743
SnapKV 0.525 0.518 0.510 0.461 0.412 0.340 0.529 0.517 0.500 0.450 0.390 0.319 0.819 0.813 0.801 0.773 0.719 0.624

PyramidKV 0.525 0.524 0.502 0.476 0.409 0.312 0.528 0.512 0.489 0.440 0.394 0.290 0.820 0.814 0.776 0.739 0.682 0.563
AdaKV 0.524 0.517 0.508 0.484 0.430 0.351 0.529 0.520 0.502 0.451 0.404 0.328 0.819 0.812 0.796 0.778 0.710 0.621
Random 0.523 0.516 0.500 0.458 0.397 0.320 0.521 0.507 0.451 0.399 0.354 0.261 0.811 0.794 0.760 0.704 0.633 0.489

TextVQA

SparseMM 0.6499 0.6492 0.6474 0.6470 0.6417 0.6312 0.6555 0.6547 0.6531 0.6505 0.6474 0.6281 0.8213 0.8215 0.8203 0.8218 0.8164 0.7719
SnapKV 0.6488 0.6474 0.6408 0.6229 0.6010 0.5616 0.6565 0.6541 0.6503 0.6345 0.6103 0.5712 0.8213 0.8212 0.8204 0.8031 0.7746 0.6990

PyramidKV 0.6487 0.6483 0.6410 0.6277 0.6040 0.5502 0.6566 0.6490 0.6430 0.6285 0.6088 0.5467 0.8218 0.8218 0.8076 0.7774 0.7440 0.6547
AdaKV 0.6482 0.6486 0.6429 0.6199 0.5988 0.5609 0.6566 0.6530 0.6464 0.6289 0.6049 0.5685 0.8213 0.8212 0.8185 0.7985 0.7695 0.7025
Random 0.6478 0.6438 0.6373 0.6235 0.6011 0.5653 0.6536 0.6494 0.6358 0.6134 0.5822 0.5400 0.8202 0.8166 0.7943 0.7601 0.6955 0.5852

ChartQA

SparseMM 0.5480 0.5452 0.5488 0.5392 0.5380 0.5276 0.5280 0.5216 0.5236 0.5188 0.5116 0.4888 0.8152 0.8152 0.8128 0.8160 0.8152 0.8016
SnapKV 0.5480 0.5536 0.5416 0.5000 0.4527 0.4304 0.5288 0.5236 0.5164 0.5016 0.4752 0.4272 0.8140 0.8144 0.8144 0.8128 0.7964 0.7552

PyramidKV 0.5488 0.5536 0.5496 0.5304 0.4716 0.4100 0.5272 0.5228 0.5080 0.4920 0.4708 0.4068 0.8140 0.8144 0.8144 0.8088 0.7924 0.7332
AdaKV 0.5492 0.5540 0.5480 0.4912 0.4576 0.4384 0.5292 0.5224 0.5156 0.5044 0.4780 0.4460 0.8152 0.8156 0.8140 0.8080 0.7964 0.7592
Random 0.5480 0.5476 0.5424 0.5304 0.4936 0.4372 0.5272 0.5152 0.5060 0.4764 0.4428 0.3944 0.8152 0.8152 0.8060 0.7876 0.7500 0.6696

TextCaps

SparseMM 0.7320 0.7309 0.7334 0.7284 0.7071 0.5992 0.7067 0.7054 0.6896 0.6795 0.6339 0.5238 1.4697 1.4744 1.4919 1.4915 1.4299 1.0431
SnapKV 0.7226 0.7167 0.6969 0.6495 0.5642 0.4431 0.7070 0.6969 0.6970 0.6504 0.5579 0.4436 1.4677 1.4744 1.4695 1.3598 1.1424 0.7940

PyramidKV 0.7237 0.7254 0.6953 0.6491 0.5745 0.4164 0.7061 0.6828 0.6592 0.6230 0.5495 0.4062 1.4694 1.4680 1.2745 1.1151 0.9536 0.5669
AdaKV 0.7263 0.7273 0.7039 0.6598 0.5923 0.4727 0.7037 0.6953 0.6850 0.6459 0.5664 0.4400 1.4690 1.4650 1.4631 1.3445 1.1461 0.8133
Random 0.7297 0.7219 0.6803 0.6268 0.5355 0.4356 0.7065 0.6980 0.6882 0.6472 0.5512 0.4368 1.4690 1.4727 1.4812 1.3824 1.1627 0.8116

Table 4. Numerical results of Fig. 5.

Method MMBench GQA VQAv2
512 256 128 96 64 48 512 256 128 96 64 48 512 256 128 96 64 48

SparseMM 81.52 81.44 81.52 81.44 80.33 77.92 64.51 64.52 64.20 63.66 62.48 60.88 75.46 75.46 75.24 75.06 74.58 74.36
SnapKV 81.52 81.44 79.64 77.75 74.57 73.79 64.53 64.51 63.77 62.38 60.82 59.19 75.38 75.50 75.02 74.32 73.58 71.98

PyramidKV 81.53 79.64 76.46 74.14 73.45 73.30 63.80 63.47 62.05 60.65 59.41 59.37 75.38 75.30 74.72 73.60 71.60 68.88
AdaKV 81.52 81.44 79.81 77.83 75.17 73.45 64.52 64.65 63.52 62.55 61.59 59.20 75.40 75.34 75.14 74.08 73.66 72.02
Random 81.52 81.36 79.64 77.92 74.22 73.54 64.51 64.38 63.87 62.60 61.00 59.39 75.28 75.32 74.78 74.16 73.36 72.44


	Implementation details
	Implementation details about GQA
	Details on Evaluation Metrics

	More Visualization
	More Analysis
	Numerical results

