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Supplementary Material

A. Overview
In this supplementary material, we first provide additional
implementation details (Sec. B). Next, we present more ex-
perimental results (Sec. C) and qualitative analysis (Sec. D)
to validate and analyze our proposed method. Finally, we
discuss the limitations of our approach and potential direc-
tions for future research (Sec. E).

B. More Implementation Details
B.1. Structural SSM Block
In the state-wise update strategy and sequence-length adap-
tive strategy, we modify the SSM parameter generation pro-
cess to enhance its efficiency. To provide a more intuitive
understanding of the structural SSM block, we present its
detailed operations in Algorithm 1. The process begins with
the normalization of input points Fx and initial spatial states
Fh followed by their linear projection into F l

x and F l
h. Next,

a lightweight convolution is applied to F l
x and F l

h, yield-
ing F̂x and F̂h. Before processing F̂x in both forward and
backward directions, we compute the relative position off-
sets△P between the input points Px and spatial states Ph.
Based on the F̂x and △P , we generate the SSM parame-
ters (Bo, Co, ∆′

o). A learnable parameter τ is introduced
to regulate the sampling interval ∆′

o, producing ∆o. Utiliz-
ing ∆o, we transform Ao, Bo. Finally, the SSM computes
the output point features F̂ o

x and the updated spatial states
F̂ o
h . The forward and backward output point features, F̂ f

x

and F̂ b
x , are gated by Fz and then summed together. Simi-

larly, the forward and backward spatial states, F̂ f
h and F̂ b

h,
are aggregated. The final outputs, F ′

x and F ′
h, are obtained

by connecting the updated inputs and spatial states to Fx

and Fh using residual connections, respectively.

B.2. Pre-training Details
Following previous works [8], we pre-train our StruMamba3D
on ShapeNet dataset [1], which contains 52,472 unique 3D
models across 55 common object categories. For each shape,
we sample 1024 points as input and partition them into 64
groups using FPS and KNN, with 60% of the groups be-
ing randomly masked. The pre-training process utilizes the
AdamW [4] optimizer, incorporating cosine learning rate
decay [7]. The initial learning rate is set to 1e-3, with a
weight decay of 5e-2 and a dropout rate of 1e-1. The batch
size is 128, and training is performed for 300 epochs. The
model pre-training is conducted on a single NVIDIA RTX
A6000 GPU and takes approximately 18 hours to complete.

B.3. Fine-tuning Details
Shape Classification on ScanObjectNN Dataset. ScanOb-
jectNN is a challenging real-world dataset comprising ap-
proximately 15,000 objects across 15 distinct categories.
For the shape classification task, we first sample 2048 points
from each object as input. Next, we leverage our proposed
StruMamba3D to extract discriminative group features, which
are then aggregated through maximum and average pooling
operations to obtain comprehensive global point cloud rep-
resentations. These global features are processed through a
classification head consisting of three linear layers, with re-
spective output dimensions of 256, 256, and Ncls (the num-
ber of object categories). Finally, a cross-entropy loss is
applied to supervise the predictions.

Lcls = −
Ncls∑
i=1

yi log(pi), (1)

where yi is the indicator function taking a value of 1 when
the true class of the point cloud is i and 0 otherwise, and pi
denotes the predicted probability for class i. For the fine-
tuning process, the model is trained for 300 epochs with
a batch size of 32 and a learning rate of 5e-4. We utilize
the AdamW optimizer [4] with a weight decay of 5e-2 and
apply cosine learning rate decay [7], with an initial learning
rate of 1e-6 and a warm-up period of 10 epochs.
Shape Classification on ModelNet40 Dataset. ModelNet40
is a widely used benchmark dataset for 3D shape classifi-
cation, containing 12,311 unique 3D models spanning 40
categories. For the shape classification task, we begin by
sampling 1,024 points from each object as input. All other
experimental settings remain consistent with those used for
the ScanObjectNN dataset. During testing, we report results
both with and without the voting strategy. The voting strat-
egy involves conducting ten tests with random scaling and
averaging the predictions to obtain the final result.
Part Segmentation on ShapeNetPart Dataset. ShapeNet-
Part [1] is a benchmark dataset specifically designed for 3D
part segmentation. It comprises 16,881 unique 3D models
spanning 16 object categories and 50 part categories, pro-
viding a diverse and comprehensive dataset for evaluating
fine-grained 3D shape understanding. For the part segmen-
tation task, we begin by sampling 2,048 points from each
shape as input. Following PointBERT [11], we adopt a
similar segmentation head architecture and extract features
from the 4-th, 8-th, and 12-th layers of our StruMamba3D.
These three levels of features are concatenated and then pro-



Algorithm 1 Structural SSM Block Process

Require: Input point features Fx: (B, N, D), Initial spatial states Fh: (B, M, D)
Ensure: Output point features F ′

x: (B, N, D), Final spatial states F ′
h: (B, M, D)

1: /* normalize the input point features Fx */
2: Fn

x : (B, N, D)← Norm(Fx), Fn
h : (B, M, D)← Norm(Fh)

3: F l
x: (B, N, E)← Linearx(Fn

x ), F
l
z: (B, N, E)← Linearz(Fn

x ), F
l
h: (B, M, E)← Linearh(Fn

h )

4: F̂x: (B, N, E)← LightConv.(F l
x), F̂h: (B, M, E)← LightConv.(F l

h)
5: /* process with different direction */
6: for o in{forward,backward} do
7: /*△P is the relative offsets between the input points and spatial states: (B, N, M, 3) */
8: Bo: (B, N, M)← ϕB(F̂x) +MLPB(△P )
9: Co: (B, N, M)← ϕC(F̂x) +MLPC(△P )

10: /* softplus ensures positive ∆o */
11: ∆′

o: (B, N, E)← log(1 + exp(ϕ∆(F̂x)))
12: /* learnable parameter τ regulates the total sampling time ∆all */
13: ∆o: (B, N, E)← τ ×∆′

o/(
∑N

i=1 ∆
′i
o)

14: /* ParameterAo is learnable parameter: (M, E) */
15: Ao: (B, N, M, E)←∆o ⊗ ParameterAo
16: Bo: (B, N, M, E)←∆o ⊗Bo

17: F̂ o
x : (B, N, E), F̂ o

h : (B, M, E)← SSM(Ao,Bo,Co)(F̂x, F̂h)
18: end for
19: /* gated linear unit and residual connection */
20: F ′f

x : (B, N, E)← F̂ f
x ⊙ SiLU(Fz), F ′b

x : (B, N, E)← F̂ b
x ⊙ SiLU(Fz)

21: F ′
x: (B, N, C)← Linearout(F ′f

x + F ′b
x ) + Fx

22: F ′
h: (B, M, C)← Linearh(F̂ f

h + F̂ b
h) + Fh

23: return F ′
x and F ′

h

cessed separately using average pooling and max pooling
to obtain two distinct global features. Besides, leveraging
feature propagation from PointNet++ [9], we upsample the
concatenated features to match the 2,048 input points, en-
suring per-point feature representation. The per-point fea-
tures are then concatenated with the two global features and
passed through a Multi-Layer Perceptron (MLP) for point-
wise label prediction. To optimize the model, we use cross-
entropy loss to supervise the predictions, which is formu-
lated as follows:

Lseg = − 1

N

N∑
i=1

Nseg∑
j=1

yij log(p
i
j), (2)

where N represents the number of points, Nseg denotes the
number of part categories, yij is the indicator function taking
a value of 1 when the true class of the point i is j and 0
otherwise, and pij denotes the predicted probability for point
i being classified as j. For fine-tuning, the model is trained
for 300 epochs with a batch size of 32 and a learning rate
of 2e-4. We utilize the AdamW optimizer [4] with a weight
decay of 5e-2. Additionally, we apply cosine learning rate
decay [7], starting with an initial learning rate of 1e-6 and
incorporating a warm-up period of 10 epochs to stabilize
early training.

Few-Shot Classification on ModelNet40 Dataset. In the
n-way-k-shot setting, the support set consists of n distinct
classes, each containing k samples. The model is trained
only using the sampled n × k samples. For evaluation,
we randomly sample 20 novel instances from each of the n
classes to form the test set. We conduct few-shot classifica-
tion experiments on the ModelNet40 dataset across four dif-
ferent configurations: 5-way-10-shot, 5-way-20-shot, 10-
way-10-shot, and 10-way-20-shot. Each configuration is
evaluated over 10 independent trials, and we report the mean
accuracy along with the standard deviation. The training
hyperparameters remain consistent with those used in the
shape classification experiments on the ModelNet40 dataset.

C. More Experimental Results
C.1. Detailed Results on Part Segmentation
We present per-category part segmentation results on the
ShapeNetPart [10] dataset. The results for PointGPT-S [2]
and PointMamba [5] are reproduced using their official code.
As shown in Tab. 1, our method achieves the best perfor-
mance in most categories. The segmentation task requires
the model to effectively capture the local structure of point
clouds. Our approach enhances local structure modeling by



introducing spatial states, which play a crucial role in im-
proving segmentation performance. This spatial state mod-
eling allows the network to better preserve spatial relation-
ships and structural details, leading to superior results in
segmentation tasks.

C.2. Large-scale 3D Scene Task
To evaluate the scalability of our approach to large-scale
3D scene understanding tasks, we conduct 3D object de-
tection experiments on the ScanNetV2 dataset, which con-
tains approximately 50K points per scene. For fair compar-
ison, we follow the evaluation protocol of Point-M2AE and
adopt 3DETR-m as our baseline. Our encoder is configured
with the same number of layers as Point-M2AE, process-
ing 2048 input tokens and employing 128 spatial states. We
pretrain our model on ScanNetV2 for 1080 epochs using
a learning rate of 5e-4 and a batch size of 16. All other
hyperparameters are kept consistent with those used in the
ShapeNet experiments. During fine-tuning, we strictly fol-
low the 3DETR-m setup to ensure a fair comparison. As
shown in Tab. 2, the experimental results clearly demon-
strate the effectiveness and generalization ability of our method
in large-scale 3D scene settings.

C.3. Ablation of Structural Modeling
Unlike the standard Mamba, we use hidden states to model
the structural information of point clouds. During the state
update and propagation process, we incorporate the relative
positions between input points and states into the generation
of SSM parameters. This spatial interaction enables each
state to selectively focus on and update the features of points
within its designated region. As a result, StruMamba3D
eliminates the need for serialization strategies to reorder the
point cloud.

To further evaluate the impact of our proposed struc-
tural modeling and point serialization strategies, we present
the experiments in Tab. 3. For the baseline using the stan-
dard Mamba block, adding serialization improves model
performance. However, due to the distortion of spatial adja-
cency, the performance still lags behind our method (89.87
vs. 92.75 on ScanObjectNN, 93.68 vs. 95.06 on Model-
Net40, and 84.07 vs. 84.96 on ShapeNetPart). StruMamba3D
achieves promising performance without the need for seri-
alization, and adding serialization provides only a modest
performance gain. Given the computational overhead intro-
duced by serialization, we choose to remove it from Stru-
Mamba3D.

C.4. Ablation of the Number of Spatial States
In this work, we introduce spatial states into the SSM to
capture the structural information of point clouds. To inves-
tigate the impact of the number of spatial states on model
performance, we conduct ablation studies as shown in Sec. C.7.
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Figure 1. FLOPs comparison with PointMAE.

The results show that reducing the number of spatial states
leads to a performance drop, highlighting the importance
of spatial states in capturing point cloud structures. When
the number of spatial states exceeds 16, the performance
no longer improves significantly with further increases. We
believe that 16 spatial states are sufficient to represent the
structural information of objects. Therefore, we set M=16
as the number of spatial states to balance model perfor-
mance and computational cost.

C.5. Ablation on the Lightweight Convolution
In the structural SSM block, we propose a lightweight con-
volution for spatial states and input points. This design
offers two key benefits: (1) Enhance feature interactions
among spatial states. (2) Replace the causal conv1d in the
original SSM block. In lightweight convolution, the num-
ber of neighboring points determines the receptive field of
the module. To select an appropriate number of neighbors,
we conduct an ablation study on the number of neighbors
for spatial states and input points. As shown in Tab. 5, the
model achieves optimal performance when k=4 for spatial
states and k=8 for input points. Additionally, we observe
that the model is more sensitive to the number of neighbors
of spatial states than to that of input points. This observa-
tion suggests that spatial states play a more crucial role in
capturing structural information.

C.6. Linear Complexity of StruMamba3D
Leveraging hardware-aware scan algorithm of Mamba [3],
StruMamba3D exhibits linear computational complexity. As
illustrated in Fig. 1, we present a FLOPs comparison with
the transformer-based method PointMAE, where StruMamba3D
demonstrates significantly lower computational cost when
processing long sequences. We also report the inference
time and FPS under different input lengths. As shown in Sec. C.6,
our method is faster than the Transformer-based method
PointGPT, especially with longer input lengths. Besides,
our method also achieves competitive inference speed com-
pared to other Mamba-based methods.



Table 1. Detailed Results of Part Segmentation on ShapeNetPart Dataset. We report the mean IoU for each category. * indicates
results reproduced using the official code.

Method mIoUc mIoUi airplane bag cap car chair earphone guitar

MaskPoint [6] 84.6 86.0 84.2 85.6 88.1 80.3 91.2 79.5 91.9
PointBERT [11] 84.1 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6
PointMAE [11] 84.2 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1
PointGPT-S* [2] 84.0 85.9 85.1 86.1 88.8 80.2 91.2 78.8 91.7
PointMamba* [5] 83.8 85.9 84.5 84.7 87.8 80.2 91.2 78.7 91.9
Ours 85.0 86.7 84.8 87.4 89.2 81.3 91.6 80.8 92.2

Method knife lamp laptop motorbike mug pistol rocket skateboard table

MaskPoint [6] 87.8 86.2 95.3 76.9 95.0 85.3 64.4 76.9 81.8
PointBERT [11] 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
PointMAE [11] 87.4 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
PointGPT-S* [2] 87.0 84.5 95.9 74.2 95.0 83.8 62.6 76.8 81.6
PointMamba* [5] 87.3 85.1 95.8 74.0 94.6 84.7 61.6 75.9 82.4
Ours 88.3 86.0 95.8 78.1 95.5 85.8 63.5 76.9 82.2

128 256 512 1024
Token Length

10

20

30

40

In
fe

re
nc

e 
Ti

m
e 

(m
s)

PointGPT
Mamba3D

PointMamba
Ours

128 256 512 1024
Token Length

50

100

150

200

250
FP

S
PointGPT
Mamba3D

PointMamba
Ours

Figure 2. Inference time and FPS comparison.

Table 2. Quantitative comparison on the ScanNetV2 dataset in
terms of mAP25 and mAP50.

Method mAP25 mAP50

3DETR 62.1 37.9
3DETR-m 65.0 47.0
Point-M2AE 66.3 48.3
Ours 67.8 50.6

Table 3. Ablation of Structural Modeling.

Backbone Serialization
Overall Accuracy mIoUc

ScanNN MN40 SNPart
Mamba ✗ 88.24 92.50 82.08
Mamba Z-order 89.28 93.44 83.89
Mamba Hilbert 89.87 93.68 84.07
StruMamba3D ✗ 92.75 95.06 84.96
StruMamba3D Z-order 92.47 94.98 84.86
StruMamba3D Hilbert 92.81 94.89 85.12

Table 4. Ablation of the number M of spatial states.

M
Overall Accuracy mIoUc

ScanNN MN40 SNPart

4 91.74 93.35 84.34
8 92.26 94.89 84.71
16 92.75 95.06 84.96
24 92.57 94.81 85.07

C.7. Performance without Pretraining
We provide the results of training our model from scratch
(without pretraining). As shown in following table, our
method still performs well, outperforming existing super-
vised learning only methods.



Table 5. Ablation on the point convolution. “k” denotes the
number of k-nearest neighbors in the lightweight convolution.

k for Fh k for Fx
Overall Accuracy mIoUc

ScanNN MN40 SNPart

4 8 92.75 95.06 84.96
2 8 91.91 94.29 84.54
8 8 92.71 94.98 84.92
4 4 92.30 94.65 84.71
4 12 92.37 94.69 84.86

Method
ScanObjectNN ModelNet40 ShapeNetPart

mOA mOA mIoUc

w/o Pretraining 91.33 93.68 83.96
MPM Pretraining 92.09 94.45 84.49
Our Pretraining 92.75 95.06 84.96

D. Qualitative Analysis
D.1. Visualization of Spatial State Correlation
We introduce spatial states into the SSM to capture the lo-
cal structure of point clouds, thereby preserving the spatial
dependencies among points. To validate the effectiveness
of spatial states, we visualize the correlations between the
output point features and spatial state features produced by
the structural SSM. Since neighboring spatial states may fo-
cus on the same region, we select five spatial states that are
widely spaced for visualization. As shown in Fig. 3, differ-
ent spatial states focus on different parts of the point cloud.
The results demonstrate that our structural SSM can effec-
tively capture the local structure of point clouds by spatial
states.

D.2. Visualization of Masked Point Modeling
In the pretraining phase, we adopt masked point modeling
as our primary self-supervised learning objective. Given a
point cloud, we randomly mask 60% of the point groups
and use StruMamba3D to extract features, followed by a
shallower decoder that predicts the coordinates of masked
points. To further analyze the ability of our model to per-
ceive structural information, we visualize the reconstruc-
tion results on the ShapeNet dataset. As shown in Fig. 4,
our model can effectively reconstruct the original structure
even when 60% of the points are masked. Moreover, our
model performs remarkably in reconstructing complex ge-
ometric patterns, such as the delicate shapes of chair backs
and table legs. These visualization results validate that our
approach can effectively capture and encode both local and
global structural information from point clouds, which is
crucial for downstream tasks.

D.3. Visualization of Part Segmentation
In this subsection, we present the qualitative results of part
segmentation on the ShapeNetPart validation set, compar-
ing ground truth and predictions. As shown in Fig. 5, our
method demonstrates highly competitive performance in part
segmentation. Notably, the ShapeNetPart dataset contains
certain annotation errors, as highlighted by the red circles.
Nevertheless, our method not only achieves a high mIoU
but also correctly segments points with erroneous annota-
tions. Moreover, for complex structures such as wheels and
chair legs, our approach delivers accurate and reliable seg-
mentation results.

E. Discussions
In this section, we discuss the limitations of our work and
potential directions for future research. Our primary goal is
to fully exploit the potential of Mamba for point cloud rep-
resentation learning. To address two key issues of Mamba:
disrupting the spatial adjacency of point clouds and strug-
gling to maintain long-sequence memory in downstream
tasks, we propose the structural SSM block and the sequence
length-adaptive strategy, respectively. While our approach
effectively models the structural information of point clouds
and achieves significant performance improvements across
four downstream tasks, certain challenges remain. Specif-
ically, in part segmentation tasks, we observe some results
with unclear boundaries. We attribute this limitation to the
nature of single-scale models, which focus on fixed-scale
features and struggle to capture geometric details across
multiple scales. For example, larger structures such as chair
backs and finer details like table legs require different scale
features for precise differentiation. To address this, a promis-
ing future direction is the development of a hierarchical
Mamba that can perform multi-scale point cloud feature ex-
traction through spatial state modeling. This could enhance
the ability of the model to adaptively capture both global
structures and fine-grained details, leading to more accurate
segmentation results.



Spatial State 2Spatial State 1 Spatial State 5Spatial State 3 Spatial State 4

Figure 3. Visualization of correlation between the output point and spatial state features produced by the structural SSM. For each
point cloud, we select five spatial states that are widely spaced for visualization.



Full Points Visible Points Reconstruction Full Points Visible Points Reconstruction

Figure 4. Visualization of reconstructed masked regions on ShapeNet. Full points represent the raw point cloud, while visible points
correspond to the input points with 60% masked. The reconstruction results consist of the predicted points combined with visible points.
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Figure 5. Visualization of part segmentation of our Structural Mamba on ShapeNetPart. Different colors represent different parts.
The red circles highlight points with obvious annotation errors.
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