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Overview
In Appendix A, we introduce the generative posterior

concept, emphasizing its consistency across different mod-
els and samplers. Moreover, Appendix B provides a de-
tailed analysis of high-level semantic generation results, ex-
ploring our zero-shot transferability, complex image gener-
ation, and the effects of CFG scales. Lastly, implementation
details for experiments on low-level visual properties are
outlined in Appendix C, along with the noise offset method
for color tendency control.

A. Analysis of Generative Posteriors
In this work, we define the generative posterior as the de-

terministic output of DDIM sampling from a specific initial
noise with a NULL text prompt. As analyzed in Sec. 3.3,
generative posteriors reveal the hidden features of the initial
noise and exhibit model-agnostic behavior.

To further investigate the role of samplers, we compare
generative posteriors from the same initial noise across mul-
tiple models (Stable Diffusion [42] v1.4, v1.5, v2.0, v2.1,
SD-turbo [48] and PixArt-ω [6]) and samplers (DDIM [49],
LMS, Heun, Euler, PNDM [34], UniPC [67], DPM2 [26],
DPM++ 2M [35], and DPM++ 2M Karras[26, 35]). As
illustrated in Fig. S2, the generated images display re-
markable consistency across different models and sampling
strategies. This universal consistency enables the creation
of a model-agnostic noise library, where each noise sample
is associated with specific latent features and can be seam-
lessly reused across models and samplers. These findings
underline the versatility of leveraging initial noise in a wide
range of generative tasks.

Model Noise PickScore CLIPScore

SD v2.1 → SD v1.4 Random 21.40 31.16
NoiseQuery 21.47 31.26

SD v2.1 → SD v1.5 Random 21.41 31.08
NoiseQuery 21.49 31.29

SD v2.1 → SD v2.0 Random 21.63 31.60
NoiseQuery 21.68 31.75

SD v2.1 → PixArt-ω Random 22.24 31.48
NoiseQuery 22.32 31.67

SD v2.1 → SD-Turbo Random 22.07 31.51
NoiseQuery 22.19 31.70

Table S1. Zero-shot transferability from SD v2.1 [42] to various
generative models on MSCOCO [33] using BLIP features as se-
mantic query. NoiseQuery outperforms random noise consistently,
proving the initial noise is a universal implicit assistant.

Scheduler Method ImageReward→ PickScore→ HPS v2→ CLIPScore→
PDNM SD v2.1 / +NoiseQuery 0.10 / 0.26 21.31 / 21.42 24.71 / 25.23 30.91 / 31.67
DDIM SD v2.1 / +NoiseQuery 0.12 / 0.26 21.30 / 21.45 24.72 / 25.17 31.18 / 31.71
LMS SD v2.1 / +NoiseQuery 0.07 / 0.27 21.31 / 21.48 24.66 / 25.37 30.83 / 31.76
Heun SD v2.1 / +NoiseQuery 0.09 / 0.27 21.34 / 21.48 24.66 / 25.29 30.93 / 31.23
Euler SD v2.1 / +NoiseQuery 0.12 / 0.22 21.35 / 21.38 24.61 / 25.12 31.23 / 31.54
DPM2 SD v2.1 / +NoiseQuery 0.09 / 0.27 21.31 / 21.42 24.66 / 25.37 30.81 / 31.79
DPM++ 2M Karras SD v2.1 / +NoiseQuery 0.10 / 0.27 21.36 / 21.44 24.77 / 25.32 30.83 / 31.79
DPM++ 2M SDE Karras SD v2.1 / +NoiseQuery 0.23 / 0.28 21.42 / 21.59 23.32 / 25.68 31.20 / 31.23

Table S2. Zero-shot transferability from DDIM to various sam-
plers on DrawBench [46].

B. Extended Analysis of High-Level Semantics
B.1. Zero-Shot Transferability

Our findings show that implicit information in initial
noise remains consistent across different models, regardless
of their architectures, as discussed in Sec. 3.3. To validate
this, we directly apply our noise library built on Stable Dif-
fusion v2.1 to various different models for generation in a
zero-shot manner. As shown in Tab. S1, our approach con-
sistently improves performance across all models, demon-
strating its robustness and broad applicability. This high-
lights the generalizability of our method, enabling seamless
integration with any diffusion model.

Additionally, NoiseQuery provides a goal-aligned initial
noise while users can freely choose various schedulers for
generation. As shown in Tab. S2, a library built with DDIM
generalizes well to other schedulers.

B.2. Complex Image Generation.
As shown in Fig. S1, our method improves the model’s

performance in challenging scenarios like visual text gen-
eration, object interaction, object composition, and spatial



Text:

A sign that says ‘ICCV’.

Object interaction:

A panda is making 

latte art.

Random 
Noise

NoiseQuery
(ours)

Object composition:

One cat and one dog 

sitting on the grass.

Attribute leakage:

A pink colored car.

Attribute leakage:

A blue colored dog.

Spatial relationship:

A cat on the right of 

a tennis racket.

Figure S1. Results on challenging scenarios, showcasing how our method enhances performance in complex image generation tasks. The
example shown uses CLIP features for semantic queries.

relationship, while reducing attribute leakage. For example,
when generating a “blue dog”, a random noise might cause
the model to adaptively infuse the blue into the entire scene.
This is because the model tries to enforce semantic con-
sistency globally, which can destabilize the generation pro-
cess, leading to unintended attribute spillover. In contrast,
our approach selects noise that already contains target fea-
tures (e.g., objects, layouts), minimizing the need for global
adjustments. This preserves object attributes, enhances se-
mantic consistency, and prevents attribute leakage.

B.3. Different CFG Scale Analysis

We provide a comprehensive analysis of our method’s
performance across various classifier-free guidance (CFG)
scales on 10k MSCOCO prompts in Fig. 7. Remarkably,
even at low CFG scales, our approach achieves comparable
or superior results compared to the baseline at much higher
scales. This demonstrates that the selected noise samples
effectively align with text prompts, reducing generation dif-
ficulty and eliminating the need for excessively high guid-
ance scales that often cause over-saturation and instability.

To complement the quantitative analysis, Fig. S3 visual-
izes the generated images across different CFG scales. Our
method consistently produces semantically accurate and vi-
sually coherent outputs even at low scales, while random
noise frequently results in failed generations. Even at higher
CFG scales, the baseline struggles to maintain stable se-
mantic alignment, whereas our approach achieves robust
and reliable performance across most scales.

C. Implementation Details of Low-Level Visual
Properties

C.1. Texture
Texture refers to the small-scale spatial patterns of inten-

sity variation in an image, which can be used to character-
ize the surface properties of objects. To control texture in
generated images, we utilize the Gray-Level Co-occurrence
Matrix (GLCM) [19], a commonly used technique for quan-
tifying texture in terms of statistical measures. The GLCM
features capture the spatial arrangement and frequency of
pixel intensity changes, providing a texture profile for each
image.

For texture-based noise querying, we compare the
GLCM features of the reference image with those stored in
the noise library. The noise with the closest texture profile
(using a distance metric like Euclidean distance) is selected
to generate the output image.

C.2. Shape
Shape refers to the geometric form or structure of ob-

jects in an image, independent of texture or color. To con-
trol shape in generated images, we use Hu Moments [22],
which are invariant shape descriptors that capture the over-
all geometry of an object, regardless of its size, position,
or orientation. These moments are derived from the im-
age’s spatial distribution of intensity and provide a compact,
rotation-invariant representation of the object’s shape.

For shape-based noise querying, the similarity between
the reference and each noise sample is measured using Eu-
clidean distance between their Hu Moments vectors. The
noise sample with the closest similarity to the reference
shape is selected to ensure the generated image maintains
the desired shape.
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Figure S2. Generative posteriors obtained from the same initial noise using different models (columns) and samplers (rows).



A cow in a pen inside a store with people.

Two horses in an enclosed area during the day.

A dog laying on a bed in a bedroom with furniture.

A happy dog sitting on the grass next to a frisbee.
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Figure S3. Visual comparison of generated images at different CFG scales (1.5, 2.0, ..., 7.0). Our method produces semantically accurate
and visually coherent images at low scales, while random noise often fails to generate meaningful or semantically consistent outputs. This
highlights our method’s ability to reduce generation difficulty and improve stability.



Algorithm 1: Noise Offset for Controlled Color Shift-
ing
Input: Diffusion model M; Initial noise ε;

Adjustment parameters ϑ (e.g., brightness,
saturation); Color adjustment function S(·, ϑ);
DDIM inversion process DDIM-Inverse(·, T );

Output: Modified noise ε→

begin
Iuncond ↑ M(ε, T, c = ↓) ;
Iadjusted ↑ S(Iuncond, ϑ) ;
ε→ ↑ DDIM-Inverse(Iadjusted, T ) ;
return ε→ ;

end

A dark town square lit only by a few  torchlights. A bald eagle against a white background.

Stable Diffusion Ours (offset) Stable Diffusion Ours (offset)

Figure S4. Unlike the original Stable Diffusion, which produces
images with medium brightness, our NoiseQuery (offset) expands
the range to include both very bright and very dark samples.

C.3. Sharpness
Sharpness is a key low-level visual property that relates

to the level of detail and clarity in an image, particularly the
prominence of high-frequency components, such as edges
and fine textures. To control sharpness in the generated
images, we focus on measuring High-Frequency Energy
(HFE). HFE quantifies the amount of high-frequency con-
tent (i.e., fine details and sharp edges) in an image. Higher
HFE corresponds to sharper, more detailed images, while
lower HFE indicates softer, blurrier images. The noise sam-
ple with the higher HFE (based on sorting) is chosen, ensur-
ing the generated image has the desired sharpness.

C.4. Noise Offset for Controlled Color Shifting
Beyond directly selecting noise, we also propose a

method to introduce subtle color shifts by adjusting genera-
tive posteriors, preserving semantic content while allowing
controlled color variations. We show the pseudo-code in
Algorithm 1 Specifically, we first generate an unconditional
image from the initial noise and then apply subtle color ad-
justments, such as changes in brightness or saturation. Af-
ter the color changes are made, we reverse the adjusted im-
age back into the noise space via DDIM inversion. This
results in a modified noise that consistently carries the de-
sired color shifts, ensuring uniform color variations across

different prompts while maintaining the underlying seman-
tic content.

This helps address the limitation of SD [42] in generat-
ing very bright or dark images, caused by noise distribu-
tion discrepancies during training and inference [32]. As
shown in Fig. S4, subtly adjusting the brightness of gener-
ative posteriors can shift the inherent tendency of the initial
noise, enabling the generation of images with a wider range
of brightness during inference. shifts the noise distribution,
enabling a wider range of brightness in generated images.
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