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1. Training Details

TADM is built based on the SD 2.1-base model, and the
training is divided into three stages. In the first stage, we
train the DFRM together with the pre-trained VAE model
for 200K iterations using Adam optimizer. The learning
rate is initialized as 2 × 10−4 and reduced by half every
50k iterations. Then, in the second stage, we jointly train
the LoRA layers of the denoising U-Net, the TPM and the
time scheduler module for 50K iterations using AdamW op-
timizer. The LoRA rank for U-Net and VAE decoder is set
as 48 and 16 respectively. The learning rate is initialized
as 3 × 10−4 and reduced by half every 15k iterations. Fi-
nally, we fine-tuned the DFRM, LoRA layers, TPM module,
and time scheduler module jointly for 10k iterations using a
learning rate of 1× 10−5.

2. Discussions

2.1. Visual Comparison with JPEG Compression
In Fig. 1, we present the visual quality, the bpp and the
LPIPS of the reconstructed images. Compared to JPEG
compression, our method requires comparable or less stor-
age space while achieving superior objective metrics. Ad-
ditionally, JPEG compression tends to produce noticeable
block artifacts and color distortions in the background re-
gions of the images, whereas our model maintains superior
reconstruction quality across all three scales.

2.2. Details about Tiled Inference
When TADM is employed for rescaling ultra-high-
resolution images, it often necessitates dividing the input
image into multiple patches for separate processing. In the
main paper, this is referred to as the tiled inference strategy.
In Algorithm 1, we elaborate on the process of tiled infer-
ence. Unlike works such as StableSR [4], our tiled inference
algorithm can predict different time steps t for each image
patch, thereby achieving dynamic allocation of generative
capacity.

The aforementioned algorithm encompasses two hyper-
parameters: the patch size and the stride length, both de-
fined in the latent space. If the patch size is set too large, al-
though inference efficiency may improve, the prediction of
time steps would become overly sparse, leading to perfor-
mance degradation. Conversely, if the patch size is set too
small, the computational load will be significantly higher,
and there might be a misalignment between the inference
size and the pre-training image size of Stable Diffusion.

Therefore, to achieve a trade-off between performance

Figure 1. Visual comparisons between our model and JPEG com-
pression. bpp/LPIPS of the reconstructed images are shown below
the images.

Algorithm 1 Tiled Inference Process

Input: Input image x, latent encoder E , decoupled feature
rescaling module DFRM, denoising U-Net ϵθ, time
prediction module TPM, time scheduler TS, latent de-
coder D, patch size p, stride length s

Output: Rescaled image x̂, LR image y
1: z = E(x) ▷ latent encoding
2: ẑ, y = DFRM(z) ▷ latent rescaling
3: [ẑi] = ToPatch(ẑ, p, s) ▷ split ẑ to patches
4: z0 list = [] ▷ initialize list of z0
5: for ẑi in [ẑi] do
6: ti = TPM(ẑi) ▷ time-step prediction
7: ϵi = ϵθ(patch, ti) ▷ noise prediction
8: zi0 = TS(ẑi, ϵ, ti) ▷ denoising by time scheduler
9: z0 list.append(zi0)

10: end for
11: z0 = Merge(z0 list) ▷ merge patches of z0
12: x̂ = D(z0) ▷ latent decoding
13: return x̂, y ▷ output

and inference efficiency, we conduct experiments on the
patch size, as shown in Fig. 2. It can be observed that the
model achieves optimal performance when the patch size
is between 60 and 120. Consequently, we select 96 as the



patch size in our work. For the stride length, we adopt the
value from previous works [4] and directly set it to 64.

In Fig. 3, we present the time step predictions when em-
ploying different patch sizes during the tiled inference pro-
cess. It can be observed that smaller patch sizes allow for
finer-grained time step predictions. However, setting the
size too small leads to misalignment with the pre-training
image size of Stable Diffusion, resulting in increased com-
putational load and performance degradation. In contrast,
our selected patch size of 96 achieves a balance between
performance and computational load, while also enabling
relatively accurate prediction of the time step mask.

Figure 2. Ablation study about patch size.

Figure 3. The time step predictions at different patch sizes..

3. Supplementary Results of Ablation Study
3.1. Image Rescaling in the Pixel Space
In the main paper, we compare the performance between
rescaling operations performed in the pixel space and latent
space. Here, we provide a more detailed comparison of the
two approaches, as shown in Fig. 4. Specifically, the rescal-
ing operator in pixel space takes HR image as input and si-
multaneously outputs both the LR image and the rescaled
image. Then, to use SD for perceptual enhancement, we
need to map the rescaled image to the latent space using a
VAE encoder and perform the denoising process. Finally,
the enhanced latent features are mapped back to the pixel
space using the VAE decoder.

However, due to the nonlinear mapping nature of the

Figure 4. Image rescaling within pixel space and latent space with
Stable Diffusion (SD) prior.

VAE encoder, the minimum distance in pixel space does not
correspond to the minimum distance in latent space. This
causes the rescaling operator trained in pixel space to mis-
align with the prior of the pre-trained SD model, resulting
in a degradation of perceptual quality. As shown in Fig. 5,
we conduct visual comparisons between rescaling in latent
space and pixel space in two different scenarios. Our latent-
space rescaling method is able to reconstruct more realistic
textures and more accurate structural features. This indi-
cates that latent-space rescaling operation can preserve suf-
ficiently fine-grained contextual information about the HR
image, such as structure, texture, and semantics.

Figure 5. Visual comparisons of our method with rescaling in pixel
space and without the SD prior.

3.2. Effectiveness of employing the SD Prior
In the main paper, we validate the effectiveness of intro-
ducing the SD prior. Here, we compare the latent features
before and after perceptual enhancement by decoding them
to the pixel space using the VAE decoder, as shown in Fig.
5. It can be seen that the latent features before perceptual
optimization exhibit noticeable color shifts and blurriness
when mapped to the pixel domain. In contrast, the percep-
tually enhanced latent features display richer textures and
more accurate color information. Therefore, leveraging the



Table 1. Quantitative comparisons with different methods at 16× and 32×. The symbols ↑ and ↓ respectively represent that higher or
lower values indicate better performance. Bold represents the best and underline represents the second best.

Dataset Method
PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ MUSIQ ↑ CLIPIQA ↑

16× 32× 16× 32× 16× 32× 16× 32× 16× 32× 16× 32×

Urban100

ESRGAN 19.36 17.68 0.4835 0.4344 0.4741 0.6142 0.2554 0.4288 65.82 57.02 0.5849 0.3860
StableSR 19.93 18.08 0.5020 0.4447 0.5827 0.6839 0.3701 0.4734 41.97 24.80 0.3439 0.4173

S3Diff 17.60 15.74 0.4368 0.3419 0.4204 0.5282 0.1917 0.2573 71.01 69.56 0.6658 0.6776
IRN 22.15 18.93 0.6155 0.4772 0.5114 0.6567 0.3338 0.4457 58.73 32.03 0.3217 0.2210

HCFlow 22.59 19.86 0.6335 0.5185 0.4841 0.6048 0.3125 0.4101 60.62 47.94 0.3182 0.2827
VQIR 20.27 18.44 0.5782 0.4427 0.3038 0.5045 0.1418 0.3290 71.56 61.64 0.6619 0.6568
Ours 21.46 18.84 0.6495 0.4685 0.2577 0.4481 0.1154 0.2386 72.22 72.88 0.7155 0.6795

DIV8K

ESRGAN 25.49 23.78 0.6247 0.6350 0.4628 0.5610 0.2518 0.4268 53.49 39.11 0.6401 0.4078
StableSR 25.90 23.55 0.6602 0.6258 0.4844 0.5497 0.2134 0.2623 47.15 46.97 0.4017 0.3557

S3Diff 22.20 20.19 0.5903 0.5063 0.4163 0.4954 0.1524 0.1997 59.98 62.58 0.6351 0.6901
IRN 28.95 25.46 0.7402 0.6636 0.4932 0.5870 0.3044 0.4066 42.61 27.76 0.3216 0.2741

HCFlow 29.22 26.69 0.7470 0.6857 0.4793 0.5616 0.2932 0.3906 42.71 35.53 0.2948 0.3128
VQIR 25.79 24.26 0.6889 0.6350 0.3221 0.4457 0.1066 0.2628 56.76 51.44 0.5769 0.6203
Ours 26.16 24.37 0.7163 0.6337 0.3117 0.4358 0.0979 0.1888 58.54 63.34 0.6836 0.7229

rich natural image priors in the pre-trained Stable Diffu-
sion model can significantly enhance the visual quality of
rescaled images.

3.3. Effectiveness of employing the Pixel Guidance
In the main paper, we demonstrate the necessity of employ-
ing the pixel guidance module for improving the quality of
LR images. Ideally, the domain converter composed of a
set of invertible neural networks (INN) should be able to
accurately perform bidirectional mapping between the fea-
ture domain and the pixel domain, enabling the LR images
to share the same content with HR images. However, due to
the limited representation power of INN, the intermediate
features zlr obtained by simply downscaling the latent code
z are not well-suited for conversion to the pixel domain.
The introduction of pixel guidance allows for embedding
pixel-domain information into the intermediate features zlr,
thereby achieving a balance between feature reconstruction
performance and LR image quality. As shown in Fig. 6, the
LR images exhibit significant noise and color distortions in
the absence of pixel guidance. However, the introduction of
pixel guidance significantly alleviates these issues.

4. Supplementary Comparisons

4.1. Results on Urban100 and DIV8K
In Table 1, we present the quantitative results on the Ur-
ban100 [2] and DIV8K [1] datasets. It can be observed that
our method demonstrates significant advantages in percep-
tual metrics. On the 16× rescaling task of the Urban100
dataset, our method not only leads in perceptual quality but
also achieves fidelity comparable to regression-based meth-
ods (IRN [7], HCFlow [3]). On the DIV8K dataset, our
approach attains the highest fidelity among all generative

Figure 6. Visual comparisons of LR images with and without pixel
guidance.

methods and achieves the best performance in almost all
perceptual metrics.

Here, we provide a visual comparison of 16× rescaling
results on the Urban100 dataset, as shown in Fig. 7. Tradi-
tional regression models, such as IRN [7] and HCFlow [3],
tend to generate overly-smooth results. GAN-based meth-
ods, including ESRGAN [5] and VQIR [6], generate more
details, but their edge information lacks accuracy and reg-
ularity. For diffusion-based super-resolution methods, such
as S3Diff [8], they are capable of generating sharp edges.
However, due to the lack of information about downscaling,
their results often exhibit lower fidelity, which manifests in
distorted structures. In contrast, our approach, by leverag-
ing the prior knowledge encapsulated in the SD model, is



Figure 7. Visual comparisons of 16× rescaling methods on the Urban100 dataset, including both the rescaled images and corresponding
edge maps. Our model is capable of restoring more regular structures and producing sharper, more accurate edges.

Figure 8. Visual comparisons of 32× rescaling methods on the DIV8K dataset. Our approach can still reconstruct correct semantic
information even in such extreme scenarios.

able to reconstruct more accurate and rich edge details. In
Fig. 8, we present a visual comparison of 32× rescaling
results on the ultra-high-resolution dataset, DIV8K. It is ev-
ident that our method is capable of recovering images with
accurate semantics, even at extreme rescaling factors. For
instance, our method is capable of accurately reconstructing
electronic devices, doors, and chairs, while retaining rich
details.

4.2. Qualitative Results of LR Image

To validate the effectiveness of our downscaling scheme, we
conduct a visual comparison of the downscaled LR images
with state-of-the-art (SOTA) methods, as shown in Fig. 9.
Overall, the LR images generated by our method achieve
comparable or even superior visual quality to SOTA image
rescaling methods. The LR images produced by VQIR and
HCFlow exhibit noticeable color shifts. Furthermore, VQIR
generated LR images contain significant noise, whereas our
method exhibits a certain degree of ringing artifacts. In fu-



Figure 9. Visual comparisons of downscaled LR images with SOTA methods.

ture work, we plan to further optimize the quality of the LR
images.
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