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Figure 1. Visualized comparison between AdaMatcher’s top-left
corner-based label adaptive assignment and our proposed center-
based label adaptive assignment (ACA) strategy.

1. Network Details

We employ a lightly modified ResNet50 as our backbone
network. Note that CLIP is solely used as an external tool
for offline embedding extraction and is excluded during in-
ference. As LoFTR [5] shares structural similarities with
our approach, we provide a detailed comparison between
the two methods in Table 1.

Input: Unlike LoFTR, we employ stacked 4 x4 patches
for parameter-free 4x downsampling. The deeper down-
sampling strategy of LoFTR requires an additional feature
extraction stage, yet our progressive channel increase (start-
ing with fewer channels) ensures computational efficiency
at the current stage.

Multi-source feature interaction: Our topic-based re-
trieval and coarse matching module replaces LoFTR’s in-
terleaved self-cross attention with a more efficient manner.
For multi-level fine matching, we adopt a 256-channel ar-
chitecture fused with features from preceding stages, miti-
gating challenges posed by heterogeneous multi-source im-
age variations.

Parameters: Despite having 9.03M more parameters
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Figure 2. Challenges in remote sensing images. (a) Multi-source
heterogeneity. (b) Indistinctive textures. (c) Spatial distribution
imbalance of land cover types.

than LoFTR (11.6M vs. 20.63M), 10.5M parameters
originate from the topic-based cross-attention mechanism.
This parameter increase is primarily attributed to the 512-
dimensional input encoding, as CLIP[3] typically utilizes
higher-dimensional encodings to preserve richer semantic
information. As shown in Table 3 of ablation studies in the
manuscript, these topic-related parameters are allocated to
highly efficient and high-reward processes, while the over-
all architecture remains optimized for retrieval tasks.

Matching  label  assignment: Building  upon
AdaMatcher’s adaptive label assignment [2], we im-
prove the traditional top-left corner-based label assignment
by adopting a center-based label adaptive assignment
(ACA) approach, shown in Figure 1. This modification
enhances robustness against large rotational misalignments
inherent in remote sensing imagery.

2. Data Description

Challenges in Data Accurately localizing objects across
multi-source remote sensing images pose significant tech-
nical challenges. As illustrated in Figure 2, we present
three representative cases spanning two datasets: the TZC



Table 1. The detailed architectures of the proposed method (TopicGeo) and the most related baseline (LoFTR). Our design improves the
computational efficiency for dual-task: i) feature extraction, ii) coarse matching, and iii)multi-level fine matching. Note that a ResBlock
includes two convolutional blocks along with a residual connection. K, S, C, SA, and CA are denoted for the kernel size, stride, size of

output channel, self-attention, and cross-attention, respectively. Note that fine encoder 2 utilizes the upsampled features of Fi

out

Stage TopicGeo Output size Stage LoFTR Output size
F Reshape(%, %)+C0nV[K :7,58:2,C:32]+GN+RelLU| g «w F Conv[K:7,S:2,C: 128]+BN+ReLU H o W o 198
! [ResBlock[K:3,S:1,C:32]+GN+RLU] « 2 8 8 ! [ResBlock[K:3,S:1,C:128]+BN+RLU] 5 |2 2
P ResBlock[K:3,S:2,C:64]+GN+RLU H o W o 64 I ResBlock[K:3,S:2,C:196]+BN+RLU H o W o 106
2 ResBlock[K:3,S:1,C:64]+GN+RLU 16 © 16 2 ResBlock[K:3,S:1,C:196]+BN+RLU 474
F ResBlock[K:3,S:2,C:128]+GN+RLU H o W o 198 F ResBlock[K:3,S:2,C:256]+BN+RLU H o W o o6
3 ResBlock[K:3,S:1,C:128]+GN+RLU 32 " 32 3 ResBlock[K:3,S:1,C:256]+BN+RLU 878 o
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! Conv[K :3,5:1,C : 256] + GN + LReLU 8§78
Linear|C : 512|(F¢)
. [SA[C : 256, head : 8(F., F¢)], 4 H W . SA[C : 256, head : 8](F,, F,) How
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dataset and the MTGLA40-5 dataset. These challenges man-
ifest as follows: (1) Multi-source heterogeneity: Substan-
tial appearance discrepancies caused by varying imaging
conditions, acquisition times, and sensor modalities. (2) In-
distinctive textures: Large homogeneous regions with in-
sufficient distinctive features for reliable feature extraction
and matching. (3) Spatial distribution imbalance of land
cover types: Highly skewed land-cover type distributions
that hinder balanced feature learning and robust matching.

Image dataset setup For the TZC dataset[1], we divide
all base maps into training, validation, and testing sets. Dur-
ing testing, all base maps in TZC dataset serve as the search
space. For the MTGL-40-5 dataset[4], we follow the proto-
col of method [4]: base maps with ID 0, 1, and 2 are used
for training, while 1.D 3 and 4 are used for testing, with D
3 specifically serving as the search space.

To effectively simulate the geometric transformation be-
tween images in real-world scenarios, for both datasets,
query images are randomly cropped from the base maps in
both the training and testing sets. Specifically, the crop-

ping scale is randomly selected between 341 and 3072 pix-
els, followed by a perspective transformation and a ran-
dom rotation between 0° and 360°. The final cropped re-
gions are resized to a fixed resolution of 1024x1024, and
the corresponding homography matrices are saved. For the
TZB dataset, we further apply color augmentation and in-
troduce Gaussian noise with an intensity randomly sampled
between 0 and 0.1.

Finally, we generate 20,580 training query images and
588 testing query images from the respective base maps in
TZC dataset, and 12,000 training query images and 522 test
query images in MTGL-40-5 dataset. Notably, we filter out
textureless query images, which is particularly common in
the MTGL-40-5 dataset due to the presence of large water
bodies with no discernible texture.

Data setup for other methods To ensure a fair compar-
ison and acknowledge the limitations of other methods in
aggregating information from the entire basemap at once,
we adopted standard preprocessing strategies for basemap
data. Specifically, the base maps are divided into image



Table 2. Topic Prompts

Category Prompts \ Attribute Prompts
Grey, White, Green, Golden,
Building Yellow, Blue, Red, Black,
Road Tall, Long, Wide, Vast
River Thick, Narrow, Dense,
Barren Clear, Dusty, Large, Small,
Forest Agricultural, Barren,
Farmland Shimmering,
A, Few, Some

patches with a 25% area overlap, which are then used for
retrieval and matching. Furthermore, one-to-one positive
image patches are designated for training both the retriever
and the matcher, while evaluating retrieval efficacy via map-
wide recall metrics. During the retrieval, methods without
geometric validation use the classic RANSAC approach.

Topic prompts As introduced in our methodology, we
establish two distinct types of topic prompts: Category
Prompts and Attribute Prompts. Including categories of
small-scale and variational objects, like cars and people,
may introduce noise. Instead, our method extracts stable
and common topics statistically derived from a large-scale
remote sensing dataset[7]. The attribute generation pro-
cess employs a data-driven strategy, avoiding manual bias.
The GPT-4 is first applied to generate comprehensive vi-
sual descriptions of these land covers. Then, descriptions
are linguistically refined into descriptive keywords (as at-
tribute prompts) of typical geographical features. The gen-
erated prompts are shown in Table 2. Our taxonomy design
illustrates three key characteristics: 1) Semantic granular-
ity adaptation through separate categorical and descriptive
prompts, 2) Data-driven description generation via large
language model analysis, and 3) Domain-specific adapta-
tion through customizable topic sets. This structured ap-
proach enables effective knowledge representation while
maintaining flexibility for various remote sensing applica-
tions.

3. Parameters Details

Geometric consistency provides a reliable confidence mea-
sure for retrieval, which involves the truncation parameter
Z. It also depends on the distance compatibility parameter
&4, the angular compatibility parameter d., and the sparsity
weight A. Due to the large number of parameters, finding
the optimal values is challenging. Therefore, we adopt em-
pirical values based on the data distribution. The parameter
dq 1s set to 0.2, meaning that a length ratio variation within
40.2 is considered normal. Similarly, J. is set to 0.175,
corresponding to 7/18. The truncation parameter Z is set

Table 3. Effect of different topics on retrieval and matching per-
formance on TZC dataset.

Category | R@1 | IoU || Attribute | R@1 | IoU

All 90.6 | 90.5 100% 90.6 | 90.5
Building | 88.7 | 83.3 80% 90.1 | 88,9
Road 879 | 82.1 60% 89.2 | 86.6
River 87.2 | 81.0 40% 88.5 | 85.5
Barren 85.1 | 774 20% 88.1 | 85.2
Farmland | 86.7 | 79.8 12% 88.0 | 85.2
Forest 85.7 | 779 8% 88.0 | 84.9
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Figure 3. The relationship between the matching index (IoU), the
matches number, and the parameter k£ of MKNN. When k=1, the
matching index IoU achieves its optimal value. As k increases, the
number of matching pairs grows. However, it also introduces more
mismatches, leading to a decline in overall matching performance.

to 10 to prevent excessive confidence decay. Finally, A is
set to 0.2.

Since our method employs center-based label assign-
ment, the minimum window size is inherently set to an
even number (4) during the multi-level fine matching stage,
rather than the odd number (5) used in top-left label assign-
ment. This further reduces computational overhead.

4. Ablation Study

CLIP encoders We compare the RemoteCLIP [3] with
RS vision language models, SkyScript [8], where base and
larger pre-trained models (CLIP ViT-B32 and ViT-L14) are
used. Table 4 illustrates that for both CLIP models, the
larger version provides more sufficient semantics. How-
ever, most metrics achieved by the base and larger versions
of RemoteCLIP are relatively higher. Moreover, the per-
formance gap between base and larger versions of Remote-
CLIP is more smaller, which shows its robustness.

Topic selection TopicGeo achieves higher performance



by estimating the topics through the interaction of category
embeddings and attribute embeddings. Consequently, the
selection of these embedding schemes directly governs the
overall efficacy. To investigate category and attribute em-
bedding influences, we evaluate TopicGeo under different
category embeddings and varying amounts of attribute em-
beddings. Table 3 presents the retrieval and matching per-
formance of a specific category embedding on TZC testing
dataset, as well as the effect of selecting different propor-
tions of detail embeddings at random. The results show that
”building” has the most significant impact on performance,
followed by “road”, while other categories exhibit compar-
atively marginal effects. Furthermore, the larger the number
of attribute topics, the better the performance. The overall
performance monotonically improves with increasing em-
beddings granularity. Note that our model dynamically pri-
oritizes important and robust matching semantics through
topic distillation and semantic matching during training.
The model gradually becomes resilient to certain unavoid-
able noise.

The parameter k of MKNN In our approach, adap-
tive center assignment of matching labels optimizes the
pipeline. Intuitively, this assignment enables one-to-many
matching, which mitigates resolution-scale discrepancies’
detrimental effects. However, it is important to note that not
all matching candidates are equally valuable, as their corre-
sponding patches differ in overlap area, center distance, and
multi-source feature characteristics. Fortunately, this pa-
rameter is independent of training, allowing for adjustments
during testing. In the adaptive local window matching and
retrieval stages, we set k = 0 since, at a fine-grained level,
there are already sufficient matching candidates, and both
stages benefit from higher precision. In the coarse match-
ing stage, the choice of k is more flexible. As shown in Fig-
ure 3, our experiments on two datasets indicate that setting
k = 1 yields the highest IoU, leading to better homogra-
phy estimation. However, as k increases, the filtering effect
weakens. While a larger k introduces more match pairs, it
also introduces additional noise, ultimately degrading the
quality of the homography estimation. Essentially, k = 1
permits unrestricted correspondence between a query patch
and patches within a 3x3 window on the base map, signify-
ing effective match filtering capability under 3 x resolution
scale discrepancies between query and base imagery.

Image size We evaluate the impact of image size on the
performance of various retrieval and matching methods us-
ing the MTGL40-5 dataset. For the retrieval, we employ
center-cropped resizing to standardize image dimensions,
while for the matching, we directly scale the images and
compare the matching performance. As shown in Figure 4
(left), as the image size decreases, the performance of local
feature-based retrieval methods gradually declines due to
the reduced number of matching pairs. In contrast, global

Table 4. Performance comparison of different CLIP encoders.

CLIP Encoder 21C MTGLA40-5

R@] R@5R@10 R@]1 R@2 R@3
RemoteClip (B) 90.6 93.2 93.7 91.6 93.1 93.9
RemoteClip (L) 90.8 93.5 93.9 91.7 93.3 94.8
SkyScript (B) 89.8 91.8 92.0 92.2 92.7 93.2

SkyScript (L)  90.5 92.3 934 92.2 93.7 944

Table 5. Resource consumption analysis (Training & Testing)

Model Training Testing
Mem(GB) FLOPs(G) Mem (GB)
LoFTR(1024) 23.2 192 10.2
Ours(1024) 16.8 123 7.2
LoFTR(512) 10.4 94 4.6
Ours(512) 8.6 71 34

feature retrieval initially benefits from a more comprehen-
sive representation, but ultimately deteriorates due to in-
sufficient information. As shown in Figure 4 (right), the
matching accuracy of most models decreases as the image
size reduces. While our method demonstrates inferior per-
formance to RoMa-like models at the standard 512 x 512
resolution, it achieves notably superior accuracy on high-
resolution imagery, aligning with the resolution demands
predominant in real-world applications.

5. Resource Consumption

As previously discussed, our method balances efficiency
and recall during the retrieval stage. While high-resolution
base maps may inherently incur elevated resource demands
during the matching process, we explicitly address this po-
tential concern through assessing resource consumption.
The experiments are conducted on a workstation equipped
with an Intel Core 17-12700KF CPU, 64GB RAM, and an
Nvidia GeForce RTX 4090 GPU with 24GB of VRAM.
We measure the computational load and memory consump-
tion of our method and LoFTR when processing query im-
ages at resolutions of 1024 and 512 on a single worksta-
tion. As evidenced in Table 5, our architecture sustains
minimized memory allocation and reduced computational
overhead throughout both training and inference phases.
This efficiency originates from the absence of cross-image
dependency constraints and our multi-stage downsampling
mechanism.

6. Method Extension

Generalization Our topic distillation introduces high-level
semantics of objects, independent of visual information,
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Figure 4. Changing image size on MTGLA40-5. Image size variation has a significant impact on the retrieval performance RQ1 and
matching performance IoU of each method. Our method is more advantageous at higher resolutions.

into the retrieval-matching network, thereby enhancing gen-
eration performance. To evaluate the generalization, we
conduct experiments on a more challenging multi-temporal
aerial dataset, Hi-UCD [6], with a spatial resolution of
0.1m. The image is processed as a large size of 5120x5120
pixels. Firstly, we train SOTA models on the Hi-UCD
dataset (w/Training) to evaluate the generation for differ-
ent datasets (experimental settings are consistent with the
satellite datasets). To further evaluate the generalization
for cross-domain, we directly use models trained on the
MTGLA40-5 dataset to test the Hi-UCD testing dataset (w/o
Training). Table 6 quantitatively verifies generation perfor-
mance on cross-domain scenarios even without fine-tuning,
comparing retrieval metrics and the average IoU of R@1
across all test samples.

Table 6. The comparison of SOTAs on the Hi-UCD dataset.

w/ Training
R@] R@2 R@3 JoU R@1 R@2 R@3 IoU

AdaMatcher 80.1 81.5 824 657 684 698 71.3 51.1
Ours(TopicFM) 83.7 85.8 87.2 73.7 72.8 734 75.6 62.6
Ours 86.2 87.4 88.1 79.6 80.2 82.6 83.5 714

Method w/o Training

Larger Scenes The proposed scale-extended and
performance-unbiased strategies enable to balance perfor-
mance and hardware efficiency in larger scenes than train-
ing: 1) Our asymmetric processing allows large-patch and
low-redundancy cropping (far lower than the typical 50%
overlap) of the reference map. 2) The proposed retrieval-
matching coupled structure allows coarse retrieval to first
identify regions of interest (Rols), followed by fine-grained
matching focused solely on these Rol areas, thereby reduc-
ing fine-grained feature extraction operations over large ir-
relevant areas.

7. Visualization Results

Matching visualization Figure 5 visually illustrates more
matching results of TopicFM and our proposed TopicGeo
on the MTGLA40-5 dataset under various difficult matching
scenarios. The EarthMatch protocol is employed, and re-
sults from the first iteration are shown. Red and green lines
indicate incorrect and correct matches, respectively. It is
seen that compared to TopicFM, our method achieves a sig-
nificantly higher number of correct matches and superior
accuracy.

Topic visualization Figure 6 and Figure 7 display topic
visualizations across different scenarios on the MTGL40-
5 and TZC datasets, respectively. Our prompt learning-
and distillation-based approach effectively extracts topics
that align well with visual features. Compared to exist-
ing self-supervised learning-based approach TopicFM, our
method demonstrates higher semantic consistency between
the query image and the reference area of the base image.
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