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Toward Fair and Accurate Cross-Domain Medical Image Segmentation:
A VLM-Driven Active Domain Adaptation Paradigm

Supplementary Material

This is the supplementary material for Toward Fair and001
Accurate Cross-Domain Medical Image Segmentation: A002
VLM-Driven Active Domain Adaptation Paradigm. We003
present the following materials:004

• Sec. 1 The more details of evaluation metrics we used.005
• Sec. 2 The more experiments (about different attributes)006

and related ablation studies.007
• Sec. 3 A brief introduction to our comparative methods.008
• Sec. 4 More visualizations of VLM-attribute learning.009

1. Details of Evaluation Metrics010

For quantifying fairness in medical image segmentation,011
we adopt the same metrics used in previous studies [1, 5,012
7]: Dice, IoU, and the important composite metrics, ES-013
Dice and ES-IoU, to assess fairness alongside performance.014
More detailed information will be added as follows.015

For Equity-Scaled metrics, we first need to compute a016
performance discrepancy ∆ for every sensitive attribute.017
This discrepancy is characterized by the cumulative differ-018
ence between each demographic subgroup’s metric and the019
overall performance. It is articulated in the following for-020
mulation:021

∆ =
∑

A∈attrs

|M ({(ŷ, y)})−M ({(ŷ, y, a) |a = A})|,

(1)022
where attrs represent demographic groups such as023
{Female, Male}, {Asian, Black, White}, or {Hispanic,024
Non-Hispanic, Unknown}, M denotes a specific metric025
(e.g., Dice or IoU), and ŷ is the ground truth. A positive ∆026
value implies that smaller values correspond to reduced per-027
formance disparities among demographic groups relative to028
the overall performance, indicating improved fairness. The029
Equity-Scaled metric can be formulated as follows:030

ESM =
M ({ŷ, y})
1 +∆

. (2)031

Through the above steps, we can calculate the ES-Dice and032
ES-IoU metrics.033

2. More Experiments034

More Experiments on Other Attribute. To further vali-035
date the generalizability of our method, we conducted ex-036
periments across another sensitive attribute (Gender) and037
performed a comprehensive comparison with state-of-the-038

art Domain Adaptation (DA) and Active Domain Adapta- 039
tion (ADA) approaches. All ADA methods were evalu- 040
ated under the same labeling quota to ensure fair compar- 041
isons. As shown in Table 1, our method significantly out- 042
performs all DA and ADA methods across key metrics. For 043
instance, in rim segmentation tasks, our approach achieves 044
an ES-Dice score of 0.785 and ES-IoU of 0.661, surpass- 045
ing previous methods by a notable margin. Statistical anal- 046
ysis (P-value < 0.05) further confirms the significant su- 047
periority of our framework in improving performance and 048
fairness. These results highlight our method’s ability to 049
address cross-domain challenges while ensuring equitable 050
outcomes for diverse demographic subgroups. 051

Detailed Ablation Studies. Our ablation study, conducted 052
after VLM learning, encompasses four main configura- 053
tions: 1) Fair-Base: This configuration adheres to the Fair 054
Quota principle by randomly selecting samples with an 055
equal quota across different subgroups of the same sen- 056
sitive attribute, resulting in the final selection list S. 2) 057
Fair-Attr: Building on the Fair Quota framework, this setup 058
exclusively employs the Attribute representative selection 059
method to choose samples from each subgroup, culminating 060
in the selection list S. 3) Fair-Poly: Maintaining the same 061
quota, this configuration focuses on selecting samples with 062
Polysemy representatives within each subgroup to form the 063
final list S. 4) Our Fair-AP: Our approach enhances the 064
balanced allocation strategy of Fair-Base by prioritizing the 065
selection of samples that integrate both Attribute and Pol- 066
ysemy considerations, thereby augmenting representation 067
and diversity, and resulting in the final selection list S. The 068
ablation study results for each sensitive attribute (gender, 069
race, and ethnicity) are displayed in Table 2, Table 3, and 070
Table 4, respectively. 071

Gender Attribute: In Table 2, the standalone application of 072
Fair-Attr or Fair-Poly demonstrates potential for enhancing 073
certain metrics, while the observed improvements exhibit 074
variability, suggesting limited consistency in performance 075
across all evaluation criteria. However, it is evident that 076
our Fair-AP comprehensively considers both attribute rep- 077
resentative and polysemy representative, ensuring superior 078
performance and fairness. 079

Race Attribute: The findings from the ablation study on 080
racial attributes indicate that if the distribution of various 081
races is imbalanced, both Fair-Attr and Fair-Poly show im- 082
provements in some performance measures (like ES-IoU 083
and IoU for Cup), as illustrated in Table 3. Our Fair-AP 084
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Table 1. Cup and rim segmentation performance on the FairDomain-Segmentation benchmark using different DA and ADA methods with
Gender as the demographic attribute. The ∗ denotes p-value < 0.05 in all paired t-test, indicating statistically significant differences.

Overall Overall Overall Overall Male Female Male FemaleMethod Venue ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ IoU↑ IoU↑
C

up Baseline (Source) - 0.885 0.888 0.806 0.808 0.886 0.889 0.807 0.810
Baseline (Target) - 0.688 0.700 0.535 0.555 0.693 0.711 0.557 0.574

R
im Baseline (Source) - 0.854 0.861 0.753 0.762 0.864 0.856 0.767 0.755

Baseline (Target) - 0.485 0.495 0.336 0.342 0.486 0.507 0.334 0.353

DA

C
up

PixMatch [6] CVPR’21 0.768 0.775 0.650 0.660 0.772 0.769 0.645 0.660
DAFormer [4] CVPR’22 0.781 0.785 0.676 0.680 0.783 0.789 0.678 0.684

DAFormer-FIA [7] ECCV’24 0.802 0.810 0.692 0.700 0.806 0.816 0.695 0.706

R
im

PixMatch [6] CVPR’21 0.660 0.673 0.519 0.523 0.669 0.688 0.519 0.528
DAFormer [4] CVPR’22 0.344 0.345 0.212 0.213 0.344 0.347 0.212 0.214

DAFormer-FIA [7] ECCV’21 0.528 0.531 0.367 0.369 0.533 0.528 0.372 0.366

ADA

C
up

Random - 0.828 0.834 0.729 0.734 0.838 0.831 0.738 0.731
Entropy [10] CVPR’19 0.819 0.823 0.717 0.721 0.826 0.821 0.724 0.719
MHPL [2] CVPR’23 0.829 0.834 0.728 0.733 0.838 0.832 0.738 0.730

DML-Core [9] NeurIPS’24 0.831 0.839 0.733 0.740 0.844 0.835 0.746 0.736
Detective [11] CVPR’24 0.831 0.837 0.733 0.740 0.841 0.834 0.745 0.736

STDR [3] IEEE TMI’24 0.831 0.837 0.731 0.738 0.842 0.834 0.743 0.734
Our FairAP - 0.839* 0.843* 0.742* 0.746* 0.845 0.841* 0.749* 0.744*

R
im

Random - 0.778 0.780 0.652 0.654 0.779 0.782 0.652 0.655
Entropy [10] CVPR’19 0.768 0.772 0.639 0.643 0.769 0.774 0.640 0.645
MHPL [2] CVPR’23 0.779 0.782 0.654 0.656 0.780 0.784 0.654 0.658

DML-Core [9] NeurIPS’24 0.782 0.783 0.658 0.658 0.782 0.784 0.658 0.658
Detective [11] CVPR’24 0.781 0.784 0.657 0.659 0.782 0.786 0.658 0.661

STDR [3] IEEE TMI’24 0.777 0.781 0.652 0.656 0.778 0.783 0.653 0.658
Our FairAP - 0.785* 0.787* 0.661* 0.663* 0.786* 0.789* 0.661* 0.664*

Table 2. Ablation study of Optic cup and rim segmentation performance on the FairDomain-Segmentation dataset with Gender as the
demographic attribute.

Overall Overall Overall Overall Male Female Male FemaleMethod ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ IoU↑ IoU↑

ADA

C
up

Fair-Base 0.832 0.836 0.734 0.737 0.838 0.834 0.739 0.735
Fair-Attr 0.831 0.836 0.732 0.738 0.841 0.833 0.743 0.735
Fair-Poly 0.834 0.841 0.735 0.743 0.846 0.837 0.749 0.739
Ours Fair-AP 0.839 0.843 0.742 0.746 0.845 0.841 0.749 0.744

R
im

Fair-Base 0.777 0.783 0.652 0.658 0.778 0.787 0.653 0.662
Fair-Attr 0.774 0.780 0.649 0.655 0.776 0.783 0.650 0.659
Fair-Poly 0.781 0.784 0.657 0.659 0.782 0.785 0.657 0.660
Ours Fair-AP 0.785 0.787 0.661 0.663 0.786 0.789 0.661 0.664

not only performs well in segmentation outcomes but also085
effectively ensures algorithmic fairness.086

Ethnicity Attribute: In Table 4, a similar trend is ob-087
served: our Fair-AP model preserves fairness robustness088
while achieving competitive performance gains in segmen-089
tation tasks, even under imbalanced distribution scenarios.090

3. Comparison Methods091

We conducted a series comparisons of Fair-AP with leading092
DA techniques, including Pixmatch [6], DAFormer [4], and093
DAFormer-FIA [7], as well as ADA approaches like En-094
tropy [10], MHPL [2], DML-Core [9], Detective [11], and095
STDR [3]. The details of these methods are summarized as096

follows: 097

Pixmatch [6]: Pixmatch introduces a novel unsupervised 098
domain adaptation framework that enhances model perfor- 099
mance on target domains by ensuring consistency in predic- 100
tions under small input perturbations. 101

DAFormer [4]: DAFormer introduces a Transformer-based 102
encoder-decoder architecture with three key training strate- 103
gies—Rare Class Sampling, Thing-Class ImageNet Feature 104
Distance, and learning rate warmup—to stabilize training 105
and mitigate overfitting in unsupervised domain adaptation 106
(UDA) for semantic segmentation. 107

DAFormer-FIA [7]: DAFormer-FIA introduces a novel 108
Fair Identity Attention (FIA) module and the first fairness- 109
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Table 3. Ablation study of Optic cup and rim segmentation performance on the FairDomain-Segmentation dataset with Race as the
demographic attribute.

Overall Overall Overall Overall Asian Black White Asian Black WhiteMethod ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ Dice↑ IoU↑ IoU↑ IoU↑

ADA

C
up

Fair-Base 0.816 0.836 0.714 0.736 0.815 0.837 0.838 0.712 0.742 0.738
Fair-Attr 0.810 0.836 0.719 0.739 0.818 0.825 0.840 0.721 0.733 0.742
Fair-Poly 0.819 0.840 0.721 0.742 0.818 0.839 0.842 0.718 0.744 0.744
Ours Fair-AP 0.828 0.843 0.731 0.747 0.827 0.843 0.845 0.730 0.751 0.748

R
im

Fair-Base 0.701 0.786 0.581 0.661 0.739 0.729 0.803 0.608 0.596 0.680
Fair-Attr 0.690 0.778 0.572 0.651 0.738 0.709 0.796 0.610 0.574 0.672
Fair-Poly 0.699 0.789 0.579 0.664 0.740 0.726 0.807 0.611 0.592 0.685
Ours Fair-AP 0.711 0.791 0.592 0.667 0.750 0.735 0.807 0.624 0.602 0.686

Table 4. Ablation study of Optic cup and rim segmentation performance on the FairDomain-Segmentation dataset with Ethnicity as the
demographic attribute.

Overall Overall Overall Overall Hispanic Non-Hispanic Hispanic Non-HispanicMethod ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ IoU↑ IoU↑

ADA

C
up

Fair-Base 0.822 0.838 0.719 0.738 0.854 0.836 0.762 0.735
Fair-Attr 0.822 0.833 0.717 0.732 0.845 0.832 0.751 0.730
Fair-Poly 0.822 0.835 0.717 0.735 0.849 0.833 0.758 0.733
Ours Fair-AP 0.836 0.840 0.730 0.743 0.844 0.839 0.759 0.741

R
im

Fair-Base 0.778 0.786 0.656 0.661 0.794 0.784 0.667 0.659
Fair-Attr 0.781 0.784 0.657 0.659 0.786 0.782 0.658 0.658
Fair-Poly 0.777 0.786 0.655 0.663 0.797 0.784 0.672 0.661
Ours Fair-AP 0.784 0.790 0.663 0.668 0.796 0.788 0.673 0.666

focused paired imaging dataset to enhance algorithmic fair-110
ness under domain shifts in medical AI, significantly im-111
proving performance across demographics in both domain112
adaptation (DA) and domain generalization (DG) tasks.113

Entropy [10]:The AdvEnt method [10] is employed to cal-114
culate the prediction map entropy for each sample within115
the target domain, and those samples with the highest en-116
tropy are selected for manual annotation.117

MHPL [2]: MHPL introduces a novel active source-free118
domain adaptation approach by identifying and exploiting119
”minimum happy points” through tailored selection strate-120
gies and a neighbor focal loss, achieving significant perfor-121
mance gains with minimal labeling effort.122

DML-Core [9]:DML-Core introduces a slice-based active123
learning method integrating deep metric learning with Core-124
set, significantly reducing annotation costs for 3D medical125
segmentation while achieving high performance under low126
annotation budgets.127

Detective [11]:Detective introduces a dynamic domain128
adaptation model with evidential uncertainty valuation and129
contextual diversity enhancement, effectively selecting in-130
formative target samples by jointly evaluating domain shifts131
and prediction confidence.132

STDR [3]: STDR improves gross tumor volume seg-133
mentation for nasopharyngeal carcinoma by employing a134
dual reference strategy to select and annotate representative135
target-domain samples, enabling effective source-free do-136
main adaptation while ensuring data privacy and minimiz-137

Figure 1. Visualization of gender feature distribution before and
after feature alignment via VLM-attribute learning.

Figure 2. Visualization of ethnic feature distribution before and
after feature alignment via VLM-attribute learning.

ing the annotation effort. 138

4. More Visualizations 139

The t-SNE visualizations [8] of sample distributions be- 140
fore and after feature alignment via VLM-attribute learning 141
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for gender and ethnic attributes are depicted in Fig. 1 and142
Fig. 2. Our VLM-attribute learning results in a more con-143
centrated distribution of features across different subgroups,144
thus improving the distinguishability of features associated145
with various attributes. In Fig. 1, we note that male and146
female samples were effectively distinguished after VLM-147
attribute learning. We also notice a balanced representation148
of male and female samples, which aids in the subsequent149
active selection strategy. Conversely, in Fig. 2, the ethnic150
proportions are uneven, and the distribution of Unknown151
samples is irregular, causing significant degradation in the152
ablation study results when either representativeness or di-153
versity is considered in isolation. Our proposed Fair-AP154
method achieves success in both segmentation performance155
and fairness, even when subgroup proportions are imbal-156
anced and sample distributions are irregular.157
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