Towards a Unified Copernicus Foundation Model for Earth Vision

Supplementary Material

A. Copernicus-Pretrain

This section reports more detailed characteristics and statistical analyses for the Copernicus-Pretrain dataset.

A.1. Comparison to existing EO pretraining datasets

Tab. 1 shows a detailed comparison between Copernicus-Pretrain and several existing EO pretraining datasets.

Table 1. A comparison of existing EO pretraining datasets.

Dataset Modality Resolution # Time stamps  # patches  # pixels
fMoW [8] RGB, MS 0.3-10 m 3 2M 50B
SEN12MS [23] SAR, MS 10 m 1 540K 35B
SeCo [18] MS 10 m 5 M 70B
SSL4EO-S12 [26] SAR, MS 10 m 4 3M 140B
SSL4EO-L [24] MS 30 m 4 SM 348B
SatlasPretrain [2] SAR, MS, RGB 0.5-10 m ~10 >10M 17T
MMEdarth [19] SAR, MS, height, landcover, etc. 10-15m 1 6M 120B
SpectralEarth [6] HS 30 m 1-23 540K 10B
Major TOM [12] SAR, MS 10 m 1 SM 6.8T
Copernicus-Pretrain SAR, MS, S3, DEM, S5P 10 m—1 km 1-12 19M 920B

A.2. Extended statistics

All-modality-aligned subset The Copernicus-Pretrain dataset contains 310K grids with at least one modality, of which
220K have all eight modalities. Tab. 2 shows the detailed characteristics of the 220K subset, and Fig. | presents its global
distribution. We refer to the full dataset (grids with at least one modality) as “union”, and the all-modality-aligned subset
(grids with all modalities) as “joint”.

Table 2. Copernicus-Pretrain dataset characteristics (joint 220K subset).

image size # grid cells  # patches # timestamps # total images

Sentinel-1 GRD ~264x264 219,543 996,978 ~4 3,948,217
Sentinel-2 TOA ~264x264 219,543 996,978 ~4 3,948,217
Sentinel-3 OLCI ~96x96 219,543 219,543 ~8 1,720,881
Sentinel-5P CO ~28x28 219,543 219,543 1-12 1,548,349
Sentinel-5P NO2 ~28x28 219,543 219,543 1-12 1,394,800
Sentinel-5P SO2 ~28x28 219,543 219,543 1-12 1,188,864
Sentinel-5P O3 ~28x28 219,543 219,543 1-12 1,750,542
Copernicus DEM ~960x960 219,543 219,543 1 219,543

Copernicus-Pretrain - 219,543 3,311,214 - 15,720,353

Statistics of local patches Fig. 2 shows the histograms of the number of local patches across grids for S1/2 in the full
datasets (union), and Fig. 3 shows the histograms for the joint subset.
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Figure 1. Global distribution of the joint subset of the Copernicus-Pretrain dataset.
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Figure 2. Histogram of local patch numbers for S1 and S2 (union).
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Figure 3. Histogram of local patch numbers for S1 and S2 (joint).

Statistics of time series. Fig. 4 presents the histograms of the time series lengths for S1 and S2 in the full dataset, while
Fig. 5 shows the corresponding histograms in the joint subset. Similarly, Fig. 6 (left and right) presents S3 in the full dataset
and joint subset, and Figs. 7 and 8 present SSP in the full dataset and joint subset.
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Figure 4. Histogram of time series lengths for S1 and S2 (union).
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Figure 5. Histogram of time series lengths for S1 and S2 (joint).
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Figure 6. Histogram of time series lengths for S3 (left: union; right: joint).
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Figure 7. Histogram of time series lengths for S5P (union).
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Figure 8. Histogram of time series lengths for S5P (joint).




B. Copernicus-FM

This section reports more implementation details, analyses, visualizations, and ablation studies for the Copernicus-FM foun-
dation model. Unless explicitly noticed, for most ablation experiments, we pretrain a ViT-Small on a 10K-grid subset of
Copernicus-Pretrain for 100 epochs with continual distillation only from DINOv2 [21] for efficiency.

B.1. Subtractive ablation

The incremental ablation in the main paper demonstrates the design evolution, but does not isolate individual contributions.
To complement, we conduct a subtractive ablation in Table 3, showing the benefits of each component regardless of order.

Table 3. Subtractive ablation. w/o means without.

EU-S1 EU-S2 EU-RGB LC-S3 03-S5P ()

Copernicus-FM 81.0 89.5 78.9 90.7 811.6

" w/o var hypernet 789 879 786 905 8576
w/o metadata 56.9 88.3 70.1 86.9 1556.3
w/o distill 77.9 88.9 78.5 90.7 839.3

B.2. Spectral hypernetwork

We use a unified Fourier encoding [3] to encode wavelengths and bandwidths for all spectral channels, which are added
together and serve as input to the spectral hypernetwork to generate patch embedding weights.

Wavelength and bandwidth details Tab. 4 lists the detailed wavelength and bandwidth values for each spectral sensor in
the Copernicus-Pretrain dataset used during our Copernicus-FM pretraining.

Sensor Wavelengths (nm) Bandwidths (nm)

S1 GRD  5e7, 5¢7 1e9, 1e9

S2 TOA 440, 490, 560, 665, 705, 740, 783, 842, 860, 940, 20, 65, 35, 30, 15, 15, 20, 115, 20, 20, 30, 90, 180
1370, 1610, 2190

S3 OLCI 400, 412.5, 442.5, 490, 510, 560, 620, 665, 15,10,10,10, 10,10, 10,10,7.5,7.5,10,7.5,7.5,
673.75, 681.25, 708.75, 753.75, 761.25, 764.375,  3.75, 2.5, 15, 20, 10, 10, 20, 40
767.5,778.75, 865, 885, 900, 940, 1020

Table 4. Wavelengths and bandwidths for different spectral sensors in Copernicus-FM pretraining.

Fourier encoding visualization Fig. 9 illustrates the Fourier encoded wavelengths and bandwidths (with 128 feature di-
mensions) for 13 S2 bands and 1 S1 band.
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Figure 9. Fourier encoding visualization for wavelengths and bandwidths of S2 and S1.



B.3. Variable hypernetwork

We use a large language model with general cross-domain knowledge to encode variable names for non-spectral modalities.
The resulting variable encodings serve as input to the variable hypernetwork to generate patch embedding weights.

Language encoding visualization Fig. 10 presents a t-SNE plot of Llama-3.2-encoded variable names. We compare the
variable names in our pretraining dataset with other out-of-domain concepts. The figure indicates that the language model
does have meaningful knowledge of these different names — S5P variables are gathered together, EO modalities are far away
from other domains like games or mountains, and concepts within a subdomain are further well clustered.
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Figure 10. t-SNE visualization of the language encodings of different variable names.

Ablation on different variable encoding options Language encoding maximizes the flexibility to process any variable
names, and also maintains semantic relationships between variables. Besides that, random hashing and spectral-sensitivity-
guided spectroscopy are two other options to encode different variables. However, compared to language encodings, random
hashing loses the flexibility and semantic relationship, while spectroscopy has semantics but lacks flexibility. Quantitatively,
we conduct a comparison study in Table 5, suggesting the superior and stable performance of language encoding.

Table 5. Variable name encoding ablation.

EU-SI EU-S2 EU-RGB LC-S3 03-S5P(})

LLM (LLaMa-3.2-1B)  81.0 89.5 78.9 90.7 811.6
Random hash 77.7 89.5 78.6 89.9 818.6
Spectroscopy 80.4 89.5 79.5 89.9 815.7

B.4. Metadata integration

We use a unified Fourier encoding [3] to integrate metadata as encoding vectors added to the positional encodings.

Fourier encoding visualization Figs. 11 and 12 illustrate the Fourier encoded metadata (location, area, and time) for a few
representative example values as below:

« location (lon 4 180°): 0°,45°,90°, 135°, 180°, 225°, 270°, 315°, 360°, 360°;



e Jocation (lat + 90°): 0°,45°,90°, 135°,180°, 0°,45°,90°, 135°, 180°;
e area (in kmz): 0.1, 1, 10, 100, 1000, 1e4, 1e5, 1e7, 18, 5.1€8;
e time (in days): 1, 7, 30, 90, 180, 365.25, 730.5, 1826.25, 3652.5.
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Figure 11. Fourier encoding visualization for geolocation (longitudes and latitudes).
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Figure 12. Fourier encoding visualization for area (left) and time (right).
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Ablation on metadata dropping ratio In practice, metadata is not always available as input. We thus randomly drop part
of the metadata during pretraining, and use learnable metadata tokens to fill missing metadata encodings. To choose the best
metadata dropping probability, Tab. 6 conducts a corresponding ablation study, where we perform k-NN evaluation on three
image classification tasks. The table suggests that a relatively high dropping ratio helps improve the model’s performance.

Table 6. Ablation study on the dropping ratio of metadata. We report overall accuracy with k-NN evaluation.

EuroSAT-S1 EuroSAT-S2 EuroSAT-RGB

metadata (drop 0.1) 77.8 88.7 79.9
metadata (drop 0.3) 73.7 86.3 717.5
metadata (drop 0.5) 77.8 89.6 78.7
metadata (drop 0.7) 81.0 89.5 78.9

metadata (drop 0.9) 78.5 88.2 74.8




Ablation on metadata details Moving further, we wonder how much benefit each metadata component brings to the model,
as well as how the format of each metadata will affect the performance. To answer these questions, Tab. 7 conducts additional
ablation on specific metadata components. Results show that geolocation gives the most significant improvement, followed
by area and time. Interestingly, geographic coordinates perform better than Cartesian coordinates despite their distortion in
high-latitude regions. Using the area corresponding to the true surface coverage (e.g., cropping and resizing make the true
surface coverage smaller) is necessary, without which the performance begins to drop. Using the day of the year and absolute
days above one-year-period perform similarly. We use the latter such that it’s convenient to extend to long time series in the
future.

Table 7. Ablation study on the benefits of each metadata type. We report overall accuracy with k-NN evaluation. Gray rows are alternative
formatting options for the metadata. Performance increases/decreases are compared to the best formatting option of previous metadata.

EuroSAT-S1 EuroSAT-S2 EuroSAT-RGB

no metadata 56.9 88.3 70.1

+ location (x,y,z) 75.8 1 18.9 88.71 0.5 73.312.8
/+ location (lon,lat)  78.2 1 21.3 88.7104 76.516.5
+ area (raw) 77.810.4 88.110.6 73.712.8
/+ area (aug) 80.312.2 89.310.6 77.410.8

+ time (dayofyear) 80.0 1 0.3 89.510.2 789 1 1.5
/+ time (absolute) 81.010.7 89.510.2 7897 1.5

B.5. Pretraining details

Data We pretrain Copernicus-FM on the joint 220K-grid subset of Copernicus-Pretrain, with each grid being one sample
unit containing aligned images from all eight modalities. For fast data loading, we convert the raw dataset into webdataset'
format, with one grid cell being one minimum sample in the shards. During training, one image from each modality is
sampled from one grid cell to construct the input for each iteration. For S1/2, we normalize the image values with channel-
wise mean and standard deviation. For S3, we multiply each channel with its corresponding scale factor’. For S5P, we
use the raw values, and replace NaN pixels with zero. For DEM, we divide the pixel values by 10000. We apply simple
data augmentations to each modality, including random resized cropping with scale [0.2, 1.0] to its corresponding input size
and random horizontal flipping. Each image comes with its metadata, including geolocation (central coordinates in lon/lat),
patch area (calculated from GSD and patch size in km?), and time (number of days since a reference date 1970-01-01). The
geolocation and patch area are adapted dynamically based on the cropping parameters in data augmentation. Note that despite
this adaptation, due to geographical projection the patch area doesn’t strictly reflect the surface area, but is accurate enough
for our pretraining purpose. While S1/2/3 images have exact acquisition dates, S5P images are monthly mean and DEM
doesn’t have a specific acquisition date. Therefore, we use the first day of the month for one S5P image, and the first day of
the year 2015 for all DEM images.

Model We use a standard vision Transformer [10] for the core backbone—e.g., a ViT-Base has 768 hidden dimensions, 12
Transformer blocks, and 12 attention heads. The MLP and attention architectures for the spectral and variable hypernetworks
are identical to Xiong et al. [30]. For the light decoder to conduct masked image modeling (MIM) pretraining, we also follow
Xiong et al. [30] and He et al. [14] with 512 hidden dimensions, 8 Transformer blocks, and 16 attention heads. For continual
distillation, a projector is used to project the output feature from the student to the frozen teacher model, both after global
average pooling.

Loss We conduct MIM and continual distillation for pretraining. For MIM, we generally follow He et al. [ 14] to reconstruct
masked-out patches for each input modality. The masking ratio is 70% for all modalities following previous performance
studies of MIM in EO [26, 28]. For distillation, we distill RGB channels of S2 from frozen DINOv2 [21] (ViT-Base with
patch size 14) with loss weight 0.1, and full channels of S1 and S2 from frozen SoftCon [27] (ViT-Base with patch size 14)
with loss weight 0.2. The former serves as an anchor to control the latent space with general vision knowledge, such that

lh:tps://glthub.com/webdatase:/webdataset
zhttps://ueveiopers.qooqie.com/earthfenqine/datasetS/cataloq/COPERNICU578370LCI


https://github.com/webdataset/webdataset
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S3_OLCI

the model can be used on high-resolution or RGB data despite only being pretrained on medium to low resolution Sentinel
images. The latter serves as an accelerator to make training converge faster, as well as offering global representation guidance
complementary to the main MIM objective. Our preliminary experiments suggest the benefits of the latter S1/2 distillation
decrease with longer training times and larger models.

Training We pretrain Copernicus-FM on 220K Copernicus-Pretrain grids for 100 epochs. The effective batch size is 288.
The basic learning rate is 1.5e-4 for batch size 256, and is linearly scaled for varied batch sizes. We warm up the learning
rate for 10 epochs, and then apply a cosine decay schedule. We use the AdamW optimizer, with a weight decay of 0.05. One
training run takes 512 GPU hours on NVIDIA A100 GPUs, or 128 node hours on one compute node with 4 A100 (40GB).



C. Copernicus-Bench

This section presents curation details, more characteristics, and additional visualizations for datasets within Copernicus-
Bench, as well as implementation details for the benchmark.

C.1. Comparison to existing EO benchmarks

Tab. 8 shows a detailed comparison between Copernicus-Bench and several existing EO benchmarks.

Table 8. A comparison of existing EO benchmarks.

#tasks task types modalities resolution  task range
SustainBench [31] 15 cls, seg, reg RGB, MS 0.6-30 m surface
GEO-Bench [17] 12 cls, seg RGB, MS, HS, SAR 0.1-15m surface
FoMo-Bench [5] 16 cls, seg, obj RGB, MS, HS, SAR 0.01-60 m  surface
PhilEO Bench [11] 3 seg, reg MS 10 m surface
Copernicus-Bench (ours) 15 cls, seg, reg,cd  MS, SAR, atmos. var.  10-1000 m  surface, atmosphere

C.2. Benchmark curation

Copernicus-Bench consists of 15 datasets organized into 3 levels of tasks covering all primary Copernicus Sentinel missions.
Among them, nine are derived from existing datasets with permissive licenses, and six are newly curated to fill in the gaps of
ML-ready datasets for S3/5P sensors.

Sourced datasets Nine out of 15 datasets in Copernicus-Bench are extracted or adapted from existing datasets:

* Cloud-S2: This is a multi-class cloud segmentation dataset derived from CloudSEN12+ [1], one of the largest Sentinel-2
cloud and cloud shadow detection datasets with expert-labeled pixels. We take 25% samples with high-quality labels, and
split them into 1699/567/551 train/val/test subsets.

* EuroSAT-S1 and EuroSAT-S2: These two are multi-class land use/land cover classification datasets taken from
EuroSAT [15] and EuroSAT-SAR [28]. We follow the train/val/test splits defined in Neumann et al. [20] with
16200/5400/5400 train/val/test images. Images of the two datasets are one-to-one paired, thus they can also be combined
to serve as a multimodal image classification dataset. These two datasets do not have time metadata.

* BigEarthNet-S1 and BigEarthNet-S2: These two datasets are sourced from BigEarthNet-v2 [9], a large-scale S1/2 dataset
for multilabel land use/land cover classification. We sample a 5% subset (11894/6117/5991 images) from each of the offi-
cial train/val/test splits, respectively. Images from the two datasets are again one-to-one paired, thus they can be combined
to serve as a multimodal multilabel image classification dataset. In addition, each S1/2 image pair has a corresponding land
cover map in 100 m resolution, thus they can also be used as pixel-level segmentation datasets.

¢ DFC2020-S1 and DFC2020-S2: These two are land use/land cover segmentation datasets derived from the IEEE GRSS
Data Fusion Contest 2020 (DFC2020) [13]. We take S1/2 images and 10 m-resolution labels from the original test set,
and further split them into 3156/986/986 train/val/test subsets. Again, images from S1 and S2 datasets are one-to-one
paired, thus they can be combined to serve as a multimodal semantic segmentation dataset. These two datasets do not have
geolocation and time metadata.

* Flood-S1: This is a flood segmentation dataset extracted from a large flood mapping dataset Kuro Siwo [4]. The original
dataset is organized according to various flooding events around the globe. We take a random subset of samples that contain
at least the water class to construct 3000/1000/1000 train/val/test subsets. Each sample contains two pre- and one post-
event S1 SAR image, forming a time-series segmentation or a change detection dataset. By default, we use one pre-event
and one post-event image in Copernicus-Bench.

e LCZ-S2: This is a multi-class scene classification dataset derived from So2Sat-LCZ42 [32], a large-scale local climate
zone classification dataset. We randomly select 25K samples from the training set of the “cultural-10” version to construct
new 15000/5000/5000 train/val/test subsets. The original data contains also S1 data, thus this dataset can also be extended
to an S1 task and a multimodal task. This dataset does not have geolocation and time metadata.



New datasets Six of 15 datasets in Copernicus-Bench are newly curated:

¢ Cloud-S3: This is a cloud segmentation dataset with raw images from Sentinel-3 OLCI and labels from the IdePix [29]
classification algorithm. We first download a few large cloudy S3 tiles (about 4800 x 400 pixels) distributed across the
globe, and then apply the IdePix algorithm using the ESA SNAP toolbox to get multi-class cloud masks. After that, we
manually check the quality of the generated masks, filter out low-quality tiles, and get seven big tiles with high-quality
cloud labels. Next, we remap the label IDs, georeference the tiles to GeoTIFFs, and use GDAL to crop the large tiles into
small patches with size 256 x 256 pixels. We remove boundary patches filled with NaN pixels, and split all high-quality
patches into 1197/399/399 train/val/test subsets. The class names for the cloud masks are: invalid, clear, cloud-sure, cloud-
ambiguous, cloud-shadow, and snow-ice, of which “invalid” should be ignored during training. Apart from the multi-class
labels, for each image we also have one binary cloud mask. Therefore, the Cloud-S3 dataset can serve as both a multi-class
and a binary segmentation dataset.

* LC100Cls-S3 and LC100Seg-S3: These two datasets are based on Sentinel-3 OLCI images and CGLS-LC100 [7] land
cover maps. CGLS-LC100 is a product in the Copernicus Global Land Service (CGLS) portfolio and delivers a global 23-
class land cover map at 100 m spatial resolution. We pick the map product for 2019, and sample and download S3 images
and LC100 labels for about 10K locations across the globe using GEE. For each location, we download a land cover map
with about 288 x 288 pixels, and four seasonal S3 OLCI images each with about 96 x 96 pixels (300 m resolution).
Despite using bright pixel percentage to simulate cloud filtering, the resulting images still contain a large volume of clouds.
To tackle this issue, we train a cloud detection model based on the previously introduced Cloud-S3 dataset and filter out
model-detected cloudy images. After a final quality check, we get about 8K samples each with a land cover map and
a time series of S3 images. We divide them into 5181/1727/1727 train/val/test subsets to construct the LC100Seg-S3
dataset. For LC100Cls-S3, we integrate multi-label annotations from the land cover maps for each sample, constructing a
multilabel classification dataset. Note that the number of S3 time stamps for different samples may differ because of the
cloud filtering process. Apart from the time series, we also pre-select one image for each sample, constructing the “static”
version of LC100Cls-S3 and LC100Seg-S3, which is the default mode in Copernicus-Bench.

* Biomass-S3: This regression dataset is based on Sentinel-3 OLCI images and CCI biomass [22]. The biomass product is
part of the European Space Agency’s Climate Change Initiative (CCI) program and delivers global forest above-ground
biomass at 100 m spatial resolution. We pick the product for 2020, and the layer of above ground biomass (AGB, unit:
tons/ha, i.e. Mg/ha) as regression ground truth, which is defined as the mass, expressed as oven-dry weight of the woody
parts (stem, bark, branches and twigs) of all living trees excluding stump and roots. We sample representative regions
across the globe, and download corresponding S3 images (one for each season) from GEE and biomass maps from the CCI
open data portal. We crop the S3 images into patches with about 96 x 96 pixels (300 m resolution), and the corresponding
biomass maps into patches with about 288 x 288 pixels. Similar to LC100Cls-S3 and LC100Seg-S3, the resulting S3
images contain a large volume of clouds, thus we use again the cloud detection model to filter out cloudy images. After
a final quality check, we acquire 5K samples each with a biomass map and a time series of S3 images. We divide them
into 3000/1000/1000 train/val/test subsets to construct the Biomass-S3 dataset. Note that the number of S3 time stamps for
different samples may differ because of the cloud filtering process. Apart from the time series, we also pre-select one image
for each sample, constructing the “static” version of Biomass-S3, which is also the default mode in Copernicus-Bench.

* AQ-NO2-S5P and AQ-O3-S5P: These two regression datasets are based on Sentinel-5P NO, and O3 images and EEA air
quality data products [16]. The European Environment Agency (EEA) air quality product provides values for the human
health related indicators of air pollutants at 1 km? grid covering the whole Europe, combining monitoring air quality data
in a “regression-interpolation-merging-mapping” methodology and the observational values of the air quality monitoring
stations used in the interpolation. We pick the products in 2021 for NO, (annual average concentration) and Ozone (O3,
93.2 percentile of maximum daily 8-hour means, SOMO35) as regression ground truth. We sample and download S5P
NO; (“tropospheric_ZNO2_column_number_density””) and O3 (“O3_column_number_density”’) images from GEE, and EEA
NO, and O3 maps from EEA datahub’. We use a sample patch size of about 56 x 56 pixels for both S5P and EEA. For
S5P, we download two versions: 1) annual mean, and 2) seasonal mean for each season. After filtering out NaN patches
and a final quality check, we get 1480/493/494 train/val/test samples for both NO; and O3, each with an “annual” mode of
1 S5P image and a “seasonal” mode of 4 S5P images. “Annual” is the default mode in Copernicus-Bench.

C.3. Benchmark characteristics

Example visualization Figs. 13 to 22 visualize some examples for each dataset in Copernicus-Bench.

3https ://www.eea.europa.eu/en/datahub
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Figure 15. Copernicus-Bench-EuroSAT-S1 and Copernicus-Bench-EuroSAT-S2.
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Figure 16. Copernicus-Bench-BigEarth-S1 and Copernicus-Bench-BigEarth-S2.
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Figure 17. Copernicus-Bench-LC100Cls-S3 and Copernicus-Bench-LC100Seg-S3. By default we pick one image per time series as
“static” mode.
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Figure 18. Copernicus-Bench-DFC2020-S1 and Copernicus-Bench-DFC2020-S2.
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Figure 20. Copernicus-Bench-LCZ-S2.
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Figure 21. Copernicus-Bench-Biomass-S3. By default we pick one image per time series as “static” mode.
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Figure 22. Copernicus-Bench-AQ-NO2-S5P and Copernicus-Bench-AQ-O3-S5P. By default we pick the “annual” mode.

Geographical distribution Fig. 23 illustrates the geographical distribution of datasets in Copernicus-Bench. Note that
DFC2020-S1, DFC2020-S2, and LCZ-S2 do not have geolocation metadata.

Metadata information Tab. 9 lists the metadata information of the datasets in Copernicus-Bench.

Table 9. Copernicus-Bench metadata availability.

Level Name Task  Sensor Bands Location Time Area
L1 Cloud-S2 seg  S2 TOA All 13 bands v v v
Cloud-S3 seg  S3 OLCI All 21 bands v v v
EuroSAT-S1 cls S1 GRD VV, VH v X Ve
EuroSAT-S2 cls S2 TOA All 13 bands v X v
BigEarthNet-S1 cls S1 GRD VvV, VH v v v
L2 BigEarthNet-S2  cls S2 SR 12 bands (no B10) v v v
LC100Cls-S3 cls  S30LCI All 21 bands v v v
DFC2020-S1 seg  S1 GRD VV, VH X X v
DFC2020-S2 seg  S2TOA All 13 bands X X v
LC100Seg-S3 seg  S3 OLCI All 21 bands v v v
Flood-S1 cd S1 GRD VV, VH v v v
LCZ-S2 cls S2 TOA 10 bands (no B1, B9, B10) X X v
L3 Biomass-S3 reg  S3 OLCI All 21 bands v v v
AQ-NO2-S5P reg  S5PNO2 tropospheric NO, column number density v v v
AQ-O3-S5P reg S5P 03 O3 column number density v v v

C.4. Benchmark implementation

We run all benchmark experiments on a single GPU, repeating three runs with different random seeds. We first benchmark two
supervised baselines with ViT-S/16 and ViT-B/16, and then conduct frozen-encoder transfer learning for a set of pretrained
models. For classification tasks, a linear layer is appended on top of the encoder; for segmentation and regression tasks,
a UPerNet decoder with an auxiliary FCN decoder is appended on top of the encoder; for the flood segmentation task, we
follow the segmentation design except that both pre- and post-event images are sent through the encoder and the difference
features are sent to the decoder.

We use simplified data augmentations for training sets: horizontal and vertical flipping for classification tasks, and 90°-
rotation, horizontal and vertical flipping for segmentation and regression tasks. No augmentation is used for validation and
testing sets. Data normalization is performed on the input according to the pretrained model’s preference. For most cases,
normalization is performed by subtracting the channel-wise mean and dividing by standard deviation based on the pretrained-
model-preferred statistics. If there is no preference, we recommend using the statistics calculated from the training set of
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Figure 23. Geographical distribution of datasets in Copernicus-Bench.

each dataset as a standard. For regression tasks, we do mean/std (of the training set) normalization also on the targets to
stabilize training. The predicted output is later converted back to the original scale to compute evaluation metrics.

We run each experiment for 50 epochs, and report the test set metrics based on the best validation scores. For classification
tasks, we use a batch size of 64, the SGD optimizer, and cross entropy loss or multilabel soft margin loss for single-label
or multi-label cases. For segmentation tasks, we use a batch size of 16, the AdamW optimizer, and cross entropy loss. For
regression tasks, we use a batch size of 16, the AdamW optimizer, and L1 loss. Specially for air quality regression tasks (NO,
and O3), the targets may contain NaN pixels, thus we customize a masked L1 loss where the NaN pixels do not contribute
to the loss calculation. For each model and dataset, we look for the best learning rate with a simple grid search from the
pool [1e-4,1e-3,1e-2] (for AdamW) and [le-2,1e-1, 1, 10] (for SGD). In most cases, the best learning rate is consistent across
models but slightly varies across datasets.



D. Bridging EO and climate with grid embeddings

D.1. Climate prediction visualization

Figs. 24 and 26 visualize the prediction results on 10-year mean/std of the six climate parameters, comparing using the
geocoordinates or a combination of coordinates and Copernicus-FM-generated grid embeddings as input data. Figs. 25
and 27 further plot the prediction error (Target-Prediction) of using only coordinates, coordinates and embeddings, and only
embeddings. The figures show that using raw coordinates captures the general distribution of the climate parameters but
tends to be over-smooth, while introducing EO-generated grid embeddings can capture finer details and extremes.
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Figure 24. Visualization of climate prediction (10-year mean) results comparing different input sources.
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Figure 25. Visualization of climate prediction (10-year mean) errors comparing different input sources.
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Figure 26. Visualization of climate prediction (10-year std) results comparing different input sources.
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Figure 27. Visualization of climate prediction (10-year std) errors comparing different input sources.
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D.2. Copernicus embedding dataset

Originally, 10K 0.25°x0.25° grids (with all 8 modalities) are sampled from the Copernicus-Pretrain dataset and encoded
using the Copernicus-FM model to get image embeddings for each modality. The embeddings are averaged over different
modalities to get one embedding vector for each grid, and later used for the climate prediction tasks to investigate the potential
of bridging EO and climate. As a follow-up, we extend the embeddings to the whole globe using the full Copernicus-
Pretrain dataset, constructing a “global embedding map” at 0.25° with shape 721x1440x768 (filling ocean grids with 0).
We term this embedding dataset Copernicus-Embed-025deg, which can be seen as a semantic map that integrates various
sources of satellite observations at an extremely high compression ratio. This dataset makes it very convenient to link
Earth’s surface to the atmosphere (e.g., as improved static variables adding to ERAS), unlocking new possibilities in the
development of weather/climate foundation models. Fig. 28 visualizes the Copernicus-Embed-025deg dataset with top-3
principal components as RGB channels.

Figure 28. Visualization of the Copernicus-Embed-025deg dataset as a global embedding map (PCA to 3-dim).



E. License

All codes, datasets, and model weights will be publicly released under permissive licenses. All codes will be released
on GitHub under the Apache-2.0 license, including the curation codes of Copernicus-Pretrain and Copernicus-Bench, the
pretraining codes of Copernicus-FM, and the benchmarking codes for Copernicus-Bench. The Copernicus-Pretrain dataset,
the newly-curated datasets in Copernicus-Bench, and the pretrained weights of Copernicus-FM will be released under the
CC-BY-4.0 license, a copy of which will be hosted on public platforms like Hugging Face. We will also contribute our
dataset, model, and benchmark to popular open-source libraries such as TorchGeo [25].
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