Appendix of TrackAny3D

1. More Implementation Details

Datasets. We conduct comprehensive experiments using
three widely-used datasets: KITTI [2], NuScenes [1], and
Waymo Open Dataset (WOD) [4]. The KITTI dataset
consists of 21 training sequences and 29 test sequences.
Due to the unavailability of test labels, we follow previous
work [3, 5] and split the training dataset into three subsets:
sequences 0-16 for training, sequences 17-18 for valida-
tion, and sequences 19-20 for testing. Compared to KITTI,
NuScenes and WOD are more challenging. NuScenes
contains 700 scenes for training, 150 for validation, and
150 for testing. WOD includes 1121 trajectories, which are
categorized into easy, medium, and hard subsets based on
the sparsity of point clouds.

Evaluation Metrics. We evaluate tracking performance
using the One Pass Evaluation (OPE) with success and
precision metrics. Success is calculated as the Intersection
over Union (IoU) between the predicted bounding box and
the ground truth bounding box, while precision measures
the distance between the centers of the two corresponding
bounding boxes.

Training and Testing. We train our model for 160 epochs
in KITTT and 60 epochs in NuScenes with a batch size of
32. The Adam optimizer is adopted with an initial learning
rate of 0.001. The learning rate is reduced to 0.2 times
its current value every 40 epochs (every 10 epochs for
nuScenes). For the loss function, we calculate the Mean
Squared Error (MSE) between the predicted offset and the
ground truth offset. Besides, to normalize the loss based on
object size, we divide the MSE by whl, which represents
the size of the bounding box (w is for width, h is for height
and [ is for length) for each object.

2. More Experimental Analyses

Bottleneck of MoGE and Adapter. In Table | and Ta-
ble 2, we investigate the impact of varying bottlenecks for
adapters and MoGE across different configurations, respec-
tively. It can be observed that an excessively large bottle-
neck leads to over-parameterization, increasing optimiza-
tion challenges and resulting in overfitting. Conversely, too
small a bottleneck restricts the model’s ability to learn com-
plex features effectively. For adapters, a bottleneck size of

72 offers the best balance, while for MoGE, setting the bot-
tleneck size to 1/8 of the Transformer dimension provides
the optimal configuration. This is the final configuration we
adopted.

Table 1. Ablations for bottleneck of adapters(AD).

Bottleneck‘TP(M)‘ Car  Pedestrian  Van Cyclist Mean

192 7.6 |70.1/81.2 48.6/75.1 70.0/81.7 73.9/93.2 60.9/78.9
128 6.4 [70.4/81.2 56.7/82.3 72.9/84.6 70.9/92.2 64.7/82.2
72 5.3 [73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4
48 4.9 |70.6/83.8 56.2/84.8 69.0/80.0 63.2/90.4 64.1/84.0

Table 2. Ablations for bottleneck of MoGE.

Bottleneck‘TP(M)‘ Car  Pedestrian  Van Cyclist ~ Mean

2 10.7 |70.7/82.3 55.7/83.4 70.5/82.9 71.4/92.5 64.2/83.1
/4 7.1 |70.2/81.5 53.0/79.2 70.1/82.7 73.7/93.7 62.8/80.9
/8 5.3 |73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4
/16 4.5 |71.9/83.9 53.1/82.3 70.8/83.1 72.1/93.2 63.7/83.3

Table 3. Ablations for the numbers of input point clouds of the
template and search regions. “N;” and “N,” denote the point
numbers of template and search region, respectively.

Point Nums ‘ Car  Pedestrian  Van Cyclist ~ Mean
N=128, Ns=128|73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4
N;=128, N,=256|70.2/81.8 56.3/82.3 71.5/82.8 71.7/92.6 64.3/82.3
Ny=256, N;=256(69.2/81.5 60.8/86.4 67.8/79.7 74.4/93.5 65.6/83.7

Table 4. Ablations for the number of all (M) and selected experts
(K) in MoGE. “TP” denotes Tunable Parameters.

‘TP(M)‘ Car Pedestrian  Van Cyclist  Mean
4| 5.3 [73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4
5.3 |72.3/83.4 57.6/84.0 69.0/80.9 71.2/92.6 65.6/83.6
4.4 |71.9/83.4 59.2/86.3 71.9/83.9 73.5/93.4 66.4/84.9
4.4 170.6/82.2 61.6/87.9 68.5/85.376.2/94.2 66.7/83.7
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Numbers of Input Point Clouds. Table 3 shows an
analysis on the sample input point numbers of template and
search regions. We noticed that increasing the point number
of regions does not effectively improve performance. It
may introduce more background noise for regions. Con-
sidering both effectiveness and inference speed, we have



selected N,=128 and N;=128 as our final configuration.

Setting of MoGE. In Table 4, we conduct an analysis of the
number of all selected experts for MoGE. Our findings indi-
cate that simply increasing the total number of experts (M)
and the number of selected experts (K) does not lead to a
linear improvement in overall performance. In fact, contin-
uously increasing the total number of experts increases the
learning burden. We ultimately chose M =8 and K=4. This
configuration was applied in all our experiments.
Parameter Control in Category-Unified Experiments.
We take MBPTrack as an example and add an experiment
in which we adjust its architecture to match the total model
parameter count (TM) of TrackAny3D. Specifically, we ex-
pand MBPTrack’s feature dimensions in its backbone and
increase the number of its Transformer layers to 12, result-
ing in a total of 26.3M parameters. As shown in Table 5, we
can observe that simply increasing the total number of pa-
rameters does not necessarily lead to optimal performance,
and TrackAny3D still outperforms MBPTrack under similar
total parameter budgets.

Furthermore, one of the key advantages of our approach
is its ability to efficiently transfer large pre-trained mod-
els to category-agnostic 3D single object tracking (SOT),
using only a small number of tunable parameters (TP).
Our method requires just 5.3M tunable parameters, which
is significantly fewer than existing methods such as CX-
Track (18.3M) and MBPTrack (7.4M). This aligns with re-
cent trends in 2D vision and natural language processing
(NLP), where efficient transfer of large models has become
a central research focus. Comparisons based on the number
of tunable parameters have increasingly served as a stan-
dard evaluation criterion for assessing model efficiency and
transferability.

Ablation Analysis of MoGE Architecture. As shown
in Tab. 6, we conducted two additional experiments: one
removes the router (i.e., all experts are merged through
direct summation), and the other compares MoGE with
a capacity-matched dense MLP under the same parame-
ter budget. The results show that our MoGE still outper-
forms these two counterparts, indicating that the perfor-
mance gains stem from the design of MoGE, including the
routing mechanism and the use of multiple experts, rather
than merely increasing the number of parameters.

Comparison of Pretraining Strategies. We compare var-
ious full fine-tuning configurations, including fine-tuning
from random initialization and fine-tuning from pretrained
RECON weights. Tab. 7 consistently shows that both fine-
tuning settings achieve lower performance compared to our
method. This is because the pretrained RECON model re-
tains strong general knowledge and feature extraction ca-
pabilities that are beneficial for downstream tasks, whereas
full fine-tuning on these limited downstream datasets risks

catastrophic forgetting of the pretrained knowledge, leading
to a degradation in performance.

Impacts of Pretrained Model. We further investigate the
impact of different pretrained models on TrackAny3D by
replacing an additional pretrained model, PointMAE. As
shown in Tab. 8, initializing with PointMAE also achieves
strong performance, demonstrating the broad effectiveness
of the paradigm we initially proposed for transferring pre-
trained models to 3D SOT is viable, and our migration
method is indeed effective.

Table 5. Ablations for Total Model Parameters (TM).

Method TP(M) TM(M) Car Pedestrain Van Cyclist Mean
CXTrack 18.3 183  60.2/72.6 54.6/81.6 57.6/70.0 44.4/57.0 57.2/75.9
MBPTrack | 7.4 74 62.3/72.1 50.2/80.9 66.6/78.2 71.8/92.2 56.1/74.9
MBPTrack* | 263  26.3 63.1/77.1 46.0/74.6 67.6/77.4 66.7/92.0 56.2/76.4
TrackAny3D | 5.3 272 73.4/852 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4

Table 6. Ablations on the MoGE Architecture.

Methods ‘TP(M) TM(M) Car Pedestrian  Van Cyclist Mean

w/o Router| 5.3  27.2 68.5/80.2 48.9/78.7 67.4/79.4 72.9/93.1 60.0/79.8
MLP 5.3 272 70.7/81.8 53.2/80.4 71.2/83.1 75.2/94.3 63.3/81.6
MoGE 53 272 73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4

Table 7. Ablations for Full Fine-tuning(FF). “R” denotes Random
Initialization. “P” denotes pre-trained weights from RECON.

Method ‘ Car  Pedestrain Van Cyclist Mean
FF-R |70.6/82.6 51.3/80.6 64.1/76.6 65.4/92.3 61.5/81.4
FF-P |69.8/83.6 53.6/81.6 62.2/73.6 65.8/90.8 62.0/82.0

w/o FF | 73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4

Table 8. Ablations for Pretrained Model.

Methods ‘ Car  Pedestrian  Van Cyclist ~ Mean
TrackAny3D-PointMAE|73.3/85.0 59.1/85.4 69.7/81.3 71.8/92.1 66.8/85.0
TrackAny3D-RECON |73.4/85.2 59.6/85.6 70.0/82.8 74.7/94.0 67.1/85.4
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