
UniConvNet: Expanding Effective Receptive Field while Maintaining
Asymptotically Gaussian Distribution for ConvNets of Any Scale

Supplementary Material

Appendix

A. A proper Asymptotically Gaussian Distri-
bution of small-scale pixels is more impor-
tant than expanding the Effective Recep-
tive Field

In dense prediction tasks (e.g., detection and segmentation),
integrating contextual information via a large effective re-
ceptive field (ERF) [42] and distinguishing pixels of differ-
ent scales are crucial. As shown in Fig. 6, the ERF is used
to visualize the effectiveness of the proposed Three-layer
RFA.

MogaNet-S [32] has similar asymptotically Gaussian
distribution (AGD) at small-scale pixels, around the center,
compared to UniConvNet-T, but UniConvNet-T exhibits a
significantly larger ERF. This indicates that expanding the
ERF while maintaining the AGD could help to generate
a multi-scale impact, following AGD from center to edge,
of a larger ERF, which consequently enhances the perfor-
mance.

When comparing MogaNet-S [32] with ConvNeXt-T
[40], MogaNet-S [32] has a better AGD at small-scale pix-
els with comparable ERF scale. This enables MogaNet-S
[32] to have superior performance, demonstrating that the
AGD of small-scale pixels is more important when the
ERF scale is comparable.

Compared to UniConvNet-T, SLaK-T [37] achieves
comparable ERF scale while disrupting the AGD of ERF.
The top-1 accuracy on ImageNet increased by 1.7% point
owing to the proper AGD on the area larger than small-
scale area in SLaK-T [37]. UniRepLKNet-T [18] achieves
much larger ERF, compared to SLaK-T [37], with infe-
rior AGD, which benefits from extremely large ERF. It
is constrained by high parameters and FLOPs costs com-
pared with UniConvNet-T. This demonstrates that the spar-
sity [37] and re-parameterization [15, 16] techniques effec-
tively enlarge the ERF but suffer from improper AGD of
smaller-scale pixels (the dark gray area in UniRepLKNet-
T [18]). Compared to UniConvNet-B, RepLKNet-31B [17]
achieves a larger ERF but compromises small-scale AGD,
with a 1.0% TOP-1 accuracy drop on ImageNet. These phe-
nomena typically demonstrate our viewpoint that a proper
asymptotically Gaussian distribution of small-scale pix-
els is more important than expanding the Effective Re-
ceptive Field.

As shown in Fig. 7, UniConvNet variants consistently

Figure 6. Effective Receptive Field (ERF) of UniConvNet-T,
MogaNet-S, SLaK-T, ConvNeXt-T, UniRepLKNet-T, ResNet-
101 and UniConvNet-B, RepLKNet-31B. The more stepped
colour area indicates better AGD. The wider area indicates a larger
ERF. Each ERF is based on an average of 1000 images with a res-
olution of 224× 224.



demonstrate large ERF while maintaining AGD. These find-
ings suggest that the Three-layer RFA can extend the ERF
with proper combination of smaller kernels (e.g., 7×7, 9×9,
11× 11).

B. Throughput Analysis Configuration
We use an A100 40GB GPU to benchmark throughput on
several classic and relevant models. The software environ-
ment is PyTorch 1.13, CUDA 11.7, cuDNN 8.5. The hard-
ware and software configurations align with InternImage
[69] to ensure a fair comparison. The overall throughput of
each model, measured as the number of images processed
per second, is reported in FP32/FP16 data formats.

C. Illustration of UniConvNet Block
C.1. Stem & Downsampling Block
Similar to ConvNeXt [40] and InternImage [69], our model
adopts a pyramid architecture with a stem block and three
downsampling blocks to generate multi-scale feature maps.
As shown in Fig. 5, The stem block, positioned before the
first stage, reduces the input resolution by a factor of 4. The
stem block employs a bottleneck design, comprising two
stacked 3 × 3 convolution layers and LayerNorm layers,
interspersed with a GELU activation function to introduce
nonlinearity to input images. The 3 × 3 convolutions have
strides of 2 and padding of 1. The first convolution output
channels are half those of the second. The downsampling
block between stages reduces the input resolution by a fac-
tor of 2. It consists of a LayerNorm layer followed by a
3× 3 convolution with a stride of 2 padding of 1.

C.2. Basic Block
Inspired by the state-of-the-art CNN model InternImage,
which integrates LayerNorm [2], feed-forward networks
[65], and GELU [25], UniConvNet incorporates three
stacked residual components in basic blocks. Each residual
component begins with a LayerNorm layer to normalize in-
put features, followed sequentially by the Three-layer RFA,
modified DCNV3 [69], and a feed-forward network. The
basic block initially employs the Three-layer RFA resid-
ual component to extract multi-scale features from small-
and large-scale patterns, establishing long-range and multi-
scale dependencies. Following the Three-layer RFA resid-
ual component, a 3 × 3 (modified DCNV3 [69]) residual
convolution block and a feed-forward network are used for
densely local perception, akin to conventional ConvNets.

D. Training Settings
D.1. ImageNet-1K/22K Training
We adopt the commonly used training recipes from state-
of-the-art methods [18, 40, 62, 64, 69, 72, 81] and re-

Super Prameters
UniConvNet-A UniConvNet-N0/N1 UniConvNet-L(S)/P0/P1/P2(W) /N2/N3/T/S/B(S)
ImageNet-1K ImageNet-1K ImageNet-22K

Imput Scale 2242 2242 1922

Training Epochs 300 300 90
Batch Size 4096 4096 4096
Optimizer AdamW AdamW AdamW
Optimizer Momentum β1, β1 = 0.9, 0.999 β1, β1 = 0.9, 0.999 β1, β1 = 0.9, 0.999
Base Learning Rate 4e−3 4e−3 4e−3

Learning Rate Schedule cosine cosine cosine
Learning Rate Decay 5e−2 5e−2 5e−2

Layer-wise Learning Rate Decay
Warmup Epochs 20 20 20
Warmup Schedule linear linear linear
Label Smoothing ε 0.1 0.1 0.1
Dropout Rate
Drop Path Rate 0.05/0.05/0.05/0.08 0.08/0.1/0.1/0.1/0.2/0.4/0.6 0.2
Layer Scale 1e−6 1e−6 1e−6

RandAugment (9,0.5) (9,0.5) (9,0.5)
Color Jitter 0.4 0.4 0.4
Horizontal Flip
Random Resized Crop
Repeated Augment
Head Init Scale
Mixup Alpha 0.8 0.8
Cutmix Alpha 1.0 1.0
Erasing Probability 0.25 0.25
Gradient Clip
Loss Cross Entropy Cross Entropy Cross Entropy
Exp. Mov. Avg. (EMA) 0.9999 0.9999

Table 11. (Pre-)Training settings for various model vari-
ants on ImageNet-1K/22K. The training recipes adhere to
standard practices [18, 40, 62, 64, 69, 72, 81], with cer-
tain tune-ups removed. Multiple stochastic depth drop rates
(e.g., 0.08/0.1/0.1/0.1/0.2/0.4/0.6) are assigned to UniConvNet-
N0/N1/N2/N3/T/S/B, respectively. “W” and “S” indicate that the
UniConvNet variants are trained using the weak and strong train-
ing recipes, respectively.

move some tune-ups for fair comparisons and to bet-
ter represent the effectiveness of the proposed UniCon-
vNet. Additionally, we apply a weak training recipe, fol-
lowing EMO [81], to improve performance on smaller
models (UniConvNet-A/P0/P1/P2), and a strong training
recipe, based on common practice [40], for larger vari-
ants (UniConvNet-N0/N1/N2/N3/T/S/B). All experiments
are conducted on the ImageNet-1K [14] dataset, compris-
ing 1000 object classes and 1.2 million training images.

Using the weak training recipe, we train UniConvNet-
A/P0/P1/P2 models from scratch with 224× 224 inputs for
300 epochs. The AdamW optimizer is used with a learning
rate of 4 × 10−3. Training begins with a 20-epoch linear
warmup, followed by a cosine decay learning rate schedule.
A batch size of 4096 and a weight decay of 0.05 are em-
ployed. RandAugment [12] is applied for data augmenta-
tion in the weak training recipe. Regularization techniques,
including Stochastic Depth [28] and Label Smoothing [57],
are employed. A Layer Scale [63] with an initial value of
1×10−6 is used. Exponential Moving Average (EMA) [48]
is employed to reduce overfitting in larger models.

For UniConvNet-N0/N1/N2/N3/T/S/B, the strong train-
ing recipe is applied, incorporating additional data augmen-
tation techniques such as Mixup [79], Cutmix [77], and
Random Erasing [84], to enhancethe dataset for training on
larger models. For UniConvNet-L, we follow the strong
training recipe and change the input image size to 192×192.



Figure 7. Effective Receptive Field (ERF) of all UniConvNet variants. The more stepped colour area indicates better AGD. The wider
area indicates a larger ERF. Each ERF is based on an average of 1000 images with a resolution of 224× 224.

Detailed training configurations for different model variants
are provided in Tab. 11.

D.2. ImageNet-1K Fine-tuning

For ImageNet-1K fine-tuning, compared to the strong train-
ing recipes for ImageNet-1K/22K, the base learning rate of
the AdamW optimizer is set to 5× 10−5. The learning rate
decay is set to 1 × 10−8. ImageNet-1K fine-tuning is per-
formed with a batch size of 512, without requiring warm-
up. Different layer-wise learning rate decay factors are ap-
plied: 0.7 for UniConvNet-T/S/B and 0.8 for UniConvNet-
L. Data augmentation techniques, Mixup [79] and Cutmix
[77], are removed to improve fine-tuning results. Addi-
tionally, ImageNet-1K pre-trained UniConvNet-T/S/B and

ImageNet-22K pre-trained UniConvNet-L are fine-tuned at
an increased resolution of 384× 384.

D.3. Training Recipes for Classification

We evaluate the performance of UniConvNet-A/P0/P1/P2/
N0/N1/N2 on ImageNet-1K to conduct an ablation study
comparing weak and strong training recipes. As illustrated
in Tab. 13, the weak training recipe exhibits overfitting
with models having 10.2M parameters, while models with
13.2M parameters start benefiting from the strong train-
ing recipe. Consequently, the choice of training recipes
is straightforward: UniConvNet-A/P0/P1/P2/N0 adopts the
weak training recipe to leverage smaller-scale datasets.
UniConvNet-N1/N2 and larger models employ the strong



Super Prameters UniConvNet-T/S/B UniConvNet-L
ImageNet-1K pt ImageNet-22K pt
ImageNet-1K ft ImageNet-1K ft

Imput Scale 3842 3842

Training Epochs 30 30
Batch Size 512 512
Optimizer AdamW AdamW
Optimizer Momentum β1, β1 = 0.9, 0.999 β1, β1 = 0.9, 0.999
Base Learning Rate 5e−5 5e−5

Learning Rate Schedule cosine cosine
Learning Rate Decay 1e−8 1e−8

Layer-wise Learning Rate Decay 0.7 0.8
Warmup Epochs
Warmup Schedule
Label Smoothing ε 0.1 0.1
Dropout Rate
Drop Path Rate 0.4/0.6/0.8 0.3
Layer Scale pre-trained pre-trained
RandAugment (9,0.5) (9,0.5)
Color Jitter 0.4 0.4
Horizontal Flip
Random Resized Crop
Repeated Augment
Head Init Scale 0.001 0.001
Mixup Alpha
Cutmix Alpha
Erasing Probability 0.25 0.25
Gradient Clip
Loss Cross Entropy Cross Entropy
Exp. Mov. Avg. (EMA) 0.9999 0.9999

Table 12. Fine-tuning settings for various model variants
on ImageNet-1K. The training recipe follows common practices
[18, 40]. Multiple stochastic depth drop rates (e.g., 0.4/0.6/0.8)
are for UniConvNet-T/S/B, respectively. “ImageNet-1K pt”,
“ImageNet-1K ft”, and “ImageNet-22K pt” represent ImageNet-
1K pre-training, ImageNet-1K fine-tuning and ImageNet-22K pre-
training, respectively.

UniConvNet #Params ACC-W(%) ACC-S(%)
UniConvNet-A 3.4M 77.0
UniConvNet-P0 5.2M 79.1
UniConvNet-P1 6.1M 79.6 78.8
UniConvNet-P2 7.6M 80.5 79.9
UniConvNet-N0 10.2M 81.7 81.6
UniConvNet-N1 13.1M 81.8 82.2
UniConvNet-N2 15.0M 82.7

Table 13. Explorations of Training Recipes for Classification.
“ACC-W(%)” and “ACC-S(%)” are the TOP-1 accuracy trained by
weak traininig recipe and strong traininig recipe, respectively.

training recipe, utilizing augmented [77, 79, 84] datasets to
optimize performance with larger parameter sizes.

D.4. Object Detection and Instance Segmentation
Fine-tuning

Following EMO [81], we utilize the standard MMDetection
[6] library and the AdamW [41] optimizer to train the heavy
RetinaNet and light SSDLite models with a batch size of 16
on 8 A100 GPUs.

Following standard practices [40, 69, 72], we further
fine-tune the scaled-up UniConvNet using batch sizes of

16 and 8, respectively, for fair comparisons. Under the 1×
schedule, images are resized so that the shorter side is 800
pixels and the longer side does not exceed 1333 pixels. Dur-
ing testing, the shorter side is fixed at 800 pixels. Under the
3× schedule, the longer side remains capped at 1333 pixels,
while the shorter side is resized to a range of 480–800 pix-
els. We also employ the standard MMDetection [6] library
and the AdamW [41] optimizer for training, using a base
learning rate of 1× 10−4.

D.5. Semantic Segmentation Fine-tuning
We fine-tune DeepLabv3 [7] and PSPNet [83] using the
ImageNet-1K pre-trained UniConvNet on the ADE20K
[85] dataset. Following EMO [81], we use the MMSeg-
mentation [11] library and the AdamW [41] optimizer to
train DeepLabv3 [7] and PSPNet [83] for 160k iterations
on 8 A100 GPUs, ensuring fair comparisons.

The scaled-up UniConvNet is fine-tuned with the Uper-
Net framework on ADE20K for 160k iterations, using a
batch size of 16. The AdamW [41] optimizer is used for
training. The base learning rates are set to 6 × 10−5 for
UniConvNet-N2/N3/T/S/B and 2 × 10−5 for UniConvNet-
L. A polynomial decay schedule with a power of 1.0 is
applied for learning rate decay. Following common prac-
tices [38, 40, 69, 72], images are cropped to 512 × 512 for
UniConvNet-N2/N3/T/S/B and 640×640 for UniConvNet-
L to ensure fair comparisons.


	A proper Asymptotically Gaussian Distribution of small-scale pixels is more important than expanding the Effective Receptive Field
	Throughput Analysis Configuration
	Illustration of UniConvNet Block
	Stem & Downsampling Block
	Basic Block

	Training Settings
	ImageNet-1K/22K Training
	ImageNet-1K Fine-tuning
	Training Recipes for Classification
	Object Detection and Instance Segmentation Fine-tuning
	Semantic Segmentation Fine-tuning


