
UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction
in Autonomous Driving

Supplementary Material

6. Broader Impacts
Our unified occupancy framework, UniOcc, holds signif-
icant promise for improving safety and efficiency in au-
tonomous driving systems. By standardizing occupancy la-
bels and providing voxel-level flow annotations across real
and simulated domains, UniOcc supports a broad spectrum
of perception and forecasting tasks. This paves the way for
more robust multi-modal reasoning and trajectory planning.

Our work aligns with a broader research agenda that
spans generative and discriminative modeling for au-
tonomous driving. For instance, the incorporation of
occlusion-free LiDAR from aerial-ground collaborative
platforms like AirV2X [7] and novel view synthesis [10]
can further enhance scene understanding in the occupancy
space. The ability to reason about partial observations, as
explored in point-based reasoning frameworks [4, 13, 17–
19, 52, 54], complements UniOcc’s handling of voxel-
level sparsity. Moreover, the integration of large vision-
language models (VLMs) for driving scene understand-
ing [14, 25, 27, 45, 47, 48, 57] opens new directions for
using language and retrieval-augmented feedback in occu-
pancy prediction. Relatedly, our efforts in benchmarking
trustworthiness in VLMs for driving [8, 44, 46] can guide
future work on safety-critical deployment of such models in
open-world environments.

Finally, the unified occupancy modeling in UniOcc pro-
vides a strong foundation for generative world models [22,
39] and equivariant scene reasoning [37, 38], which are
essential for long-horizon forecasting and generalization
across cities and sensor setups. We believe that UniOcc will
accelerate the development and evaluation of both classical
and foundation-model-driven autonomous driving systems.

7. Algorithm Details
7.1. Occupancy Flow Computation
We discuss the details of our occupancy flow computation
introduced in Section 3.1.
1. Dynamic Foreground. At time t, we gather all vox-

els coordinates V t
n,d ∈ Rn×3 that belong to a labeled

agent a. We also have the agent-to-ego transformations
at times t and t + 1, namely T e,t

a,t and T e,t+1
a,t+1 , as well as

the ego-to-ego transformation T e,t+1
e,t = (Tw

e,t+1)
−1Tw

e,t.
We compute the agent’s frame transformation as:

T a,t+1
a,t =

(
T e,t+1
a,t+1

)−1
T e,t+1
e,t T e,t

a,t , (13)

whose inverse gives the per-voxel motion in the a, t
frame:

Ma,t+1
a,t =

(
T a,t+1
a,t

)−1
. (14)

We then transform each voxel V t
n,d to predict its position

Ṽ t+1
n,d at t+ 1:

Ṽ t+1
n,d = T e,t+1

a,t+1 T a,t+1
a,t Ma,t+1

a,t T a,t
e,t V t

n,d. (15)

The flow field is then given by:

F t
n,d = Ṽ t+1

n,d − V t
n,d, (16)

expressed in the ego coordinate frame by default, though
we optionally provide an agent-centric flow variant for
rotation-invariant models [37, 56].

2. Static Background. For each static voxel V t
n,s, we com-

pute its coordinates at t+ 1 using:

Ṽ t+1
n,s =

(
Tw
e,t+1

)−1
Tw
e,t V

t
n,s, (17)

and obtain F t
n,s as in Eq. (16).

For 2D flows, we begin with 2D grids and apply the same
transformation steps outlined above.

7.2. GMM for Shape Comparison
We discuss the details of the GMM model fitting process in
this section.

Let Dc ∈ Rn×3 be the n dimensions for a category c (for
example Car). We wish to fit a GMM with K components.
Each GMM is parameterized by:

GMMc : {πk,µk,Σk}Kk=1,

where
• πk are the mixing coefficients, with

∑K
k=1 πk = 1.

• µk ∈ R3 are the mean vectors.
• Σk ∈ R3×3 are the covariance matrices (usually symmet-

ric and positive-definite).
We fit the GMM parameters via the standard

expectation-maximization(EM) algorithm so that each
GMM component is “pulled” toward the points with high
responsibility for the component. Rather than manually set-
ting the number of components K and the covariance type,
we perform a hyperparameter search using the Bayesian
Information Criterion (BIC). Given a dataset of bounding
box dimensions for a category, we fit multiple GMMs with



Figure 7. We compute the probability of a car by comparing its
dimensions to the dimensional distribution of all cars in the data
source.

varying numbers of components K and covariance types to
find the optimal configuration.

Let B be the set of extracted bounding box dimensions:

B = {< li, wi, hi >| i = 1, . . . , n},

where l, w, h denote length, width, and height. To introduce
robustness to the dimension data from occupancy predic-
tions, we apply slight random perturbations corresponding
to the voxel resolution:

l← l+ϵl, w ← w+ϵw, h← h+ϵh, ϵ ∼ U(− ϵ

2
,
ϵ

2
).

We then perform a grid search over:
• K ∈ {1, 2, . . . , 20} (number of components)
• Covariance types: spherical, tied, diag, full

For each candidate model, we compute the BIC score
and select the best configuration:

K̂, Σ̂ = argmin
K,Σ

BIC(K,Σ).

This ensures that the selected GMM balances model com-
plexity and data fit. With the learned GMM, we can eval-
uate how well each detected object fits the learned shape
distribution, enabling object classification and outlier iden-
tification.

Once we acquire the GMM distribution, we measure the
dimension of the predicted/forecasted objects and compare
it with the distribution to estimate its probability of being a
true object corresponding to that category. Figure 7 illus-
trates this process.

7.3. Ego Localization in the Occupancy Space
By design, the results of 3D occupancy forecasting do not
inherently include the future poses of the ego vehicle. How-
ever, such information is critical for downstream tasks such

Figure 8. Occupancy space localization steps.

as object tracking, behavior prediction, and motion plan-
ning. To address this gap, we propose a method to estimate
the ego motion directly from a sequence of occupancy grids
and associated flow fields. Specifically, we leverage the 3D
flow vectors observed on static voxels (e.g., road), under the
assumption that their apparent motion arises solely from the
ego vehicle’s movement between frames.

Given a temporal sequence of dense 3D occupancy grid
G ∈ {0, . . . , C}T×L×W×H and a corresponding flow field
F ∈ RT×L×W×H×3, we isolate static scene elements and
estimate the ego vehicle’s SE(3) transformation via robust
point cloud registration. This procedure is performed inde-
pendently at each frame to recover the frame-to-frame ego
motion.



7.3.1. Estimating Rigid Transform from 3D Motion
Given that each voxel in the forecasted 3D occupancy grid
is associated with a semantic class, we can isolate voxels
corresponding to static scene elements (e.g., roads, build-
ings). Let V t

s denote the set of static voxels at time t, and
let F t

s represent the corresponding 3D flow vectors.
According to our flow definition in Eq. (16), the esti-

mated position of each static voxel in the next frame can be
computed as:

Ṽ t+1
s = V t

s + F t
s (18)

We aim to estimate a rigid-body transformation (R, t) ∈
SE(3) that aligns the original static voxel set with its pre-
dicted next-frame positions:

Ṽ t+1
s ≈ RV t

s + t (19)

Similar to the centroid extraction in Eq. (4), we compute
the centroids of the voxels. We then re-center them by sub-

tracting the centroids, and we denote them as Ṽ t+1
s , V t

s .
To estimate the optimal rigid transformation, we apply

the Kabsch algorithm:
1. Compute cross-covariance matrix:

H =

N∑
i=1

Ṽ t+1
s V t

s

⊤

2. Perform SVD: H = UΣV⊤

3. Recover rotation:

R = VU⊤

4. If det(R) < 0, negate the third column of V to ensure a
proper rotation.

5. Compute translation:

t = Ṽ t+1
s −RV t

s

7.3.2. Robust Estimation with RANSAC
To improve robustness against noise and outliers in the flow
field, we adopt a RANSAC-based procedure for estimating
the ego-motion transform. At each iteration, we perform the
following steps:
1. Randomly sample 3 point-motion pairs V t

s,3, F t
s,3.

2. Estimate a rigid transform (R, t) like above.
3. Compute residuals:

εi =
∥∥∥RV t

s,3 + t− Ṽ t+1
s,3

∥∥∥
2

4. Count inliers with εi < τ , where τ is a fixed threshold.
5. Retain the transform with the largest inlier count.

Once RANSAC converges, we re-estimate the final rigid
transformation using all inliers to improve accuracy. In our
experiments, we set the inlier threshold τ = 0.01 and run
for a maximum of 100 iterations, which provides a good
trade-off between accuracy and efficiency.

7.3.3. Ego Motion via Inversion
The estimated transformation (R, t) maps voxel points
from time t to t + 1. Since the scene is assumed static,
this transform is the inverse of the ego motion, which is
therefore:

Rego = R⊤, tego = −R⊤t

This yields the relative ego pose between frames t and
t + 1, expressed in the ego’s initial frame. The steps above
are illustrated in Figure 8.

7.3.4. Accumulating Camera Poses
To obtain the ego’s trajectory, we recursively compose rela-
tive ego motion transforms:

T̂0 = I4×4, T̂t+1 = T̂t ·Tt+1

This yields the ego pose T̂t ∈ SE(3) in the coordinate
frame of the initial timestep.

7.4. Occupancy Space Tracking, Alignment and
Comparison Process

In Section 3.4.2, we discuss the process for occupancy
tracking, alignment, and shape comparison. In Figure 9,
we further illustrate it with an example. We begin with two
consecutive model-forecasted occupancy grids (e.g., from
OccWorld [55]) at t = 0 s and t = 1 s, each containing
voxel-wise semantic labels and flow vectors. In this exam-
ple, we choose car as an example, so we isolate the vox-
els with semantic label car. Using the occupancy grid at
t = 0 s, we perform a single-step forward estimation by
adding the forward flow vectors to the occupied voxels to
obtain their predicted coordinates in the next frame.

Next, we compute the centroids of all segmented objects
in both the estimated and forecasted grids. We apply bi-
partite Hungarian matching to associate corresponding ob-
ject instances across frames, completing the tracking step.
To evaluate shape consistency, we apply the alignment pro-
cedure described in Algorithm 1, which aligns the voxel
sets by rotating the estimated objects to match the fore-
casted ones using principal axis alignment. Once aligned,
we measure their voxel-wise similarity via the intersection-
over-union (IoU) metric.

Importantly, this method of computing temporal con-
sistency is modality-agnostic. For instance, in Figure 10,
we illustrate the case of multi-modal forecasting with three
possible futures. Temporal consistency can be indepen-
dently computed for each future branch by aligning the prior



Figure 9. Flow Chart for Occupancy Space Tracking, Alignment
and Comparison.

Figure 10. Example of how temporal consistency is measured in a
multi-modal of three futures. I.e., the ego is rotated to match each
of the modalities.

frame’s occupied voxels to the corresponding forecasted
voxels before evaluating their overlap.

It is also important to note that the tracking procedure
applies not just to the ego, but also to the other agents, al-
lowing us to turn the occupancy forecasting problem into a
motion prediction problem.

7.5. Voxel Alignment with PCA
In Algorithm 1, we include the pseudo code to align vox-
els through the temporal dimension by standardizing their
rotations, which we introduced in Section 2.

8. Sim-Real Compatibility
The simulation data generated from CARLA differs from
real-world driving data in several important aspects, includ-
ing ego and agent speeds, traffic density, and vehicle ge-
ometry. Among these factors, we found that differences
in agent speed between simulation and real-world datasets
have the most significant impact on the temporal consis-
tency of the trained models. Specifically, scenes in our
CARLA dataset tend to feature narrower streets and slower-
moving agents compared to those in nuScenes or Waymo.
A comparative analysis of speed distributions is shown in
Figure 7.

To quantify the impact of this discrepancy, we conducted
additional experiments using a subset of CARLA scenes
focused on highway driving, generated with the Town06
map, which supports speeds up to 55mph (24.5m/s). As



Table 6. Occupancy forecasting performance of OccWorld [55] after mixing into the training data with either full-speed-range (Unbiased)
CARLA scenes or highway-only CARLA scenes.

Train Sources Test Source mIoUgeo↑ IoUgeo↑ IoUbg↑ IoUcar↑ Pcar↑
0 s 1 s 2 s 3 s 0 s 1 s 2 s 3 s Average over 0 s to 3 s

nuScenes + Unbiased CARLA nuScenes 71.47 31.70 22.69 18.11 62.94 35.83 28.29 21.03 55.07 77.87 82.97
nuScenes + Highway CARLA nuScenes 72.63 31.89 22.21 21.85 63.70 36.24 28.68 21.15 61.40 85.59 82.89

Waymo + Highway CARLA Highway CARLA 84.02 54.12 53.07 52.40 74.32 28.11 24.15 23.05 87.43 92.53 81.62
nuScenes + Waymo + Highway CARLA Highway CARLA 87.50 67.15 61.86 59.75 74.85 28.57 25.20 23.61 88.14 98.41 82.54

Algorithm 1 PCA-Based Coordinate Transformation with
Consistent Handedness
Input: V t: A set of 3D points at timestep t, pcat−1 (if avail-

able)
Output: V̂ t: Transformed coordinates with consistent ori-

entation

Step 1: Fit the PCA to the current timestep.
pcat.fit(V t)
pcaref = pcat

Step 2: Transform coordinates into the principal component
space.
V̂ t ← pcat.transform(V̄ t)

for t ∈ {t2, . . . , tn} do
Step 3: Ensure consistent handedness using PCA from

previous timestep.

(a) Compute diagonal sign vector.
kt = pcat.components
kt−1
ref = pcat−1

ref .componentsT

σ ← sign
(
diag

(
kt · kt−1

ref

))
(b) Apply sign correction to maintain consistency.
V̂ t ← V̂ t ⊙ σ ; // Hadamard product
ensures consistent PCA orientation

end
return V̂ t

shown in Table 6, incorporating these high-speed scenes
into training yields notable improvements: +11% in back-
ground consistency (IoUbg) and +9% in object-level consis-
tency (IoUcar). These results suggest that higher-speed sim-
ulated environments lead to more realistic motion dynamics
and improved temporal coherence when used for joint train-
ing.

In our future work, we plan to further explore the role of
sim-to-real compatibility and investigate principled ways to
adapt or calibrate simulation data for improved generaliza-
tion to real-world domains.

9. Unified Quality Score
Even though our proposed metrics do not depend on ex-
isting pseudo-labels, we retain the current widely used la-

bels/metrics to keep comparability with prior works, while
our novel metrics provide further insights into shape realism
and consistency of voxels.

To facilitate direct comparison across methods and eval-
uation settings, we introduce a composite metric, UniOcc
Score, which aggregates multiple specialized metrics via a
weighted average:

UniOccScore = λRecon · IoUt=0s
geo

+ λForecast 1s · IoUt=1s
geo

+ λForecast 2s · IoUt=2s
geo

+ λForecast 3s · IoUt=3s
geo

+ λTemp bg · IoUbg

+ λTemp car · IoUcar

+ λProbs car · Pcar
.

Here, each λ weight controls the contribution of a par-
ticular aspect of performance: reconstruction quality, fore-
casting accuracy at various horizons, temporal consistency
for background and dynamic objects, and the realism prob-
ability for predicted cars.

While the weights may be adjusted depending on the
downstream application (e.g., emphasizing forecasting met-
rics in long-horizon prediction tasks), we provide a refer-
ence configuration that balances reconstruction and fore-
casting:

Weight Component Value

λRecon 0.20
λForecast 1s 0.15
λForecast 2s 0.10
λForecast 3s 0.05
λTemp bg 0.30
λTemp car 0.20
λProbs car 0.10

The resulting UniOcc scores from our experiments are
reported in Table 9.

10. Additional Experiments
In Table 8, we show the results of using voxel-level flow
on OccWorld [55] on the Waymo dataset. The performance
gain is consistent with the nuScenes dataset in Table 2.



Table 7. Distribution of ego vehicle speeds in CARLA and nuScenes datasets. The standard CARLA scenes exhibit predominantly low-
speed driving behavior, whereas nuScenes features a broader speed distribution. Our highway-focused CARLA subset (generated using
the Town06 map) better matches the real-world speed range observed in nuScenes, improving sim-real compatibility for training.

Table 8. Occupancy forecasting performance of OccWorld [55] on Waymo datasets with different types of flow.

Train and Test Source Flow Type mIoUgeo↑ IoUgeo↑ IoUbg↑ IoUcar↑ Pcar↑
0 s 1 s 2 s 3 s 0 s 1 s 2 s 3 s Average over 0 s to 3 s

Waymo None 68.24 30.40 24.03 21.79 70.89 34.41 28.85 26.33 56.06 88.10 83.55
Waymo Object 67.66 30.65 24.41 21.93 71.26 34.03 29.18 26.60 55.56 88.11 84.30
Waymo Voxel 71.35 32.04 25.77 23.76 72.69 36.04 30.48 27.96 58.26 89.30 86.68

Table 9. Reference UniOcc Score.

Train Sources Test Source UniOcc Score

nuScenes nuScenes 63.99
Waymo nuScenes 57.26
CARLA nuScenes 40.10
nuScenes Waymo 65.36
Waymo Waymo 68.40
CARLA Waymo 41.70
nuScenes CARLA 71.48
Waymo CARLA 71.05
CARLA CARLA 46.39

nuScenes + Waymo nuScenes 65.53
nuScenes + Waymo Waymo 68.86

nuScenes + CARLA nuScenes 62.24
Waymo + CARLA nuScenes 58.61

nuScenes + CARLA Waymo 66.13
Waymo + CARLA Waymo 68.45

nuScenes + CARLA CARLA 73.53
Waymo + CARLA CARLA 71.00

nuScenes + Waymo + CARLA nuScenes 63.64
nuScenes + Waymo + CARLA Waymo 70.11
nuScenes + Waymo + CARLA CARLA 70.58

11. Additional Dataset Details
In Table 10, we include a list of the different labels used in
our different data sources.

Table 10. Label correspondence across four different sources
(nuScenes, Waymo, CARLA, and UniOcc (Ours)). Empty cells
indicate no direct counterpart.

ID nuScenes Waymo Carla UniOcc (Ours)
0 general object general object free general object
1 barrier vehicle buildings vehicle
2 bicycle pedestrian fences bicycle
3 bus sign other motorcycle
4 car cyclist pedestrians pedestrian
5 construction vehicle traffic light poles traffic cone
6 motorcycle pole roadlines vegetation
7 pedestrian construction cone roads road
8 traffic cone bicycle sidewalks walkable/terrain
9 trailer motorcycle vegetation building

10 truck building vehicles free
11 drivable surface vegetation walls -
12 other flat tree trunk trafficSigns -
13 sidewalk road sky -
14 terrain walkable ground -
15 manmade - - -
16 vegetation - - -
17 free - - -
23 - free - -


