V2XScenes: A Multiple Challenging Traffic Conditions Dataset for
Large-Range Vehicle-Infrastructure Collaborative Perception
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Figure 8. Detailed sensor layouts for both roadside and vehicle side view in V2XScenes. We illustrate the roadside and vehicle layouts
at left and right respectively. All devices are synchronized via satellite timing. Also, we show the relative mounting position of 4 60°-FOV
cameras and 2 120°-FOV cameras in the vehicle-side layouts. M-LiDAR, B-LiDAR and S-LiDAR are the abbreviations of mechanical
rotating LiDAR, blind repair LiDAR and solid-state LiDAR respectively. MEC represents the Mobile Edge Computing module.
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A. Outline

In this supplementary material, we add more information
and visualization results to demonstrate the data diversity

and scenario complexity of V2XScenes. We first present
more detailed sensor configurations and layouts for both
roadside and vehicle-side view. Then, more analysis and
visualization of the calibration and annotation are summa-
rized. Afterwords, additional benchmark qualitative results
and visualizations for 3D cooperative perception and track-
ing under various conditions in V2XScenes are also given in
the final part. This supplementary material is organized as
shown in the contents. The V2XScenes dataset and bench-
mark codes will be released.

B. More Details of the Multi-Sensor Layouts

B.1. Details of Sensor Layouts and Configurations

The specific sensors mounting location of each roadside and
vehicle-side position are illustrated in Fig. 8. For the road-
side devices at each position, all sensor data are connected
to the Ethernet switch, and converted into a centralized
optical fiber signal based on an Ethernet/Optical-converter
module. We employ this data transmission method for all



Table 5. The sensor configuration in V2XScenes. The abbreviation of the sensor name can be seen in Fig 8. For the view of infrastructure,

we summarize sensors in overall seven positions in the road section.

View | Sensor | Number | Details
| M-LiDAR | 6 | 128beams; 10hz; Distance range 200m; Horizonal FOV [-180°, 180°]; Vertical FOV [-20°, 20°].
S-LiDAR 2 125beams; 10hz; Distance range 200m; Horizontal FOV [-60°, 60°]; Vertical FOV [-12.5°, 12.5°].
Infrastructure B-LiDAR 3 32beams; 10hz; Distance range 100m; Horizontal FOV [-180°, 180°]; Vertical FOV [0°, 90°].
Camera 13 RGB, 60hz, Resolution 2560x1440; Horizontal FOV [-43°, 43°].
4D-Radar 2 20hz; Detection Radius 300m; Horizontal FOV [-70°, 70°]; Vertical FOV [-20°, 20°]
M-LiDAR 1 128beams; 10hz; Distance range 200m; Horizontal FOV [-180°, 180°]; Vertical FOV [-20°, 20°].
Vehicle B-LiDAR 2 32beams; 10hz; Distance range 100m; Horizontal FOV [-180°, 180°]; Vertical FOV [0°, 90°].
120° Camera 2 RGB, 30hz, Resolution 1920x1080; Horizontal FOV [-60°, 60°].
60° Camera 4 RGB, 30hz, Resolution 1920x1080; Horizontal FOV [-30°, 30°].
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Figure 9. Specific index for roadside and vehicle-side sensors. All the given index are used in the benchmark codes to determine the

designated sensors’ data. The abbreviations are the same to Fig. 8.
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Figure 10. Mounting position of the corresponding roadside
sensors with specific index. The different colors of the numbers
represent the various type of the roadside sensors, i.e., five types
of the roadside sensors include three types of LiDARs, one type of
Radar and one type of camera.

seven roadside position, and the overall collected data are
ultimately transmitted to the main switch connected with
the roadside MEC. The detailed parameters of all sensors in
V2XScenes are listed in Tab 5. Also, we give the follow-
ing indexes for each sensor to facilitate data organization
and analysis in benchmark code as shown in Fig 9, and Fig
10 presents the corresponding mounting position with the
index of roadside sensors.

B.2. Visualization for Roadside 4D Radar

Compared to other sensors such as LiDAR and camera, 4D
high-resolution millimeter-wave Radar has stable detective

capabilities, which is not affected by the variation of ad-
verse weather such as fog, heavy rain and air pollution. Due
to its robustness under extreme conditions, it has attracted a
wide attention from both academia and industry. Currently,
4D high-precision millimeter wave radar is commonly ap-
plied and investigated in vehicle-side automated driving.
However, there is no autonomous driving-oriented dataset
providing 4D millimeter wave radar data under roadside
scenarios yet, especially with respect to some challenging
scenarios. The potential advantages of roadside 4D mil-
limeter wave Radar for cooperative vehicle-infrastructure
cooperative perception still remain to be further explored.
To this end, our V2XScenes provides two 4D millimeter
wave Radars at both two intersections mounting with a face-
to-face opposite direction. Furthermore. Also, we collected
data in multiple weather conditions for comparison.

Fig 11 illustrates the visualization of 4D Radar under the
weather of sunny and rainy respectively. We can see that in
contrast to LiDAR point clouds, 4D millimeter-wave radar
point clouds are unable to capture the fine details and con-
tours of detected objects. For each object with 3D bounding
boxes, the point clouds from 4D Radar perform a clustered
, which can be enhanced through sequential frame-based
compensation. From the figure, the roadside images un-
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Figure 11. Visualization of 4D Radar under different weather. Int.A and Int.B represent the intersection A and B respectively. We use
different colors of 3D bounding boxes to illustrate the various label classes, where the ‘X’ denotes the moving orientation of the bounding
boxes. The main categories are colored as follows: Car, Motorcycle, , Truck, Bus, s

der different weather conditions show significant environ-
mental variations, where the rain on the ground and in the
air can also affect the LIDAR reflections. In contrast, the
4D millimeter-wave Radar demonstrates stable perception
across both weather scenarios. Additionally, The 4D Radar
requires much less data to characterize the same object as
the LiDAR although the detailed contours are inadequately,
which achieves higher data efficiency and reduces the com-
putational load. In V2XScenes, different types of LIDAR
are also provided under the same view, we aim to investi-
gate the advantages of integrating diverse roadside sensors
in enhancing single-vehicle autonomous driving.

C. More Details of the Calibration
C.1. Roadside Multi-modal Calibration

Most of the existing calibration boards are usually applied
for vehicle-side sensors, thus it is difficult to acquire a large
enough of features under roadside perspective based on the
commonly used calibration plane. Therefore, we design a
customized calibrators with roadside-oriented plane to ob-
tain multi-modal features for aligning the coordinates, and
calculating the transformation matrix of T’ jgar2Cmaera b€-
tween camera and LiDAR. The camera and LiDAR are
mounted at a height of approximately 5m, and the cus-
tomized plane is in the shape of an equilateral rectangular
triangle with each length of 2m. We place the calibrators
under the same view of LiDAR and camera, and collect sev-
eral pairs of related features corresponding to the different
modal data. Fig. 13 demonstrates the LiDAR-Camera cali-
bration results for all 14 combinations of roadside sensors.

Algorithm 1: Calculation process of T'venicle2World

Input: Dense map P gense, Vehicle original point
cloud P,, Vehicle pose T-A and TEEA

veh,i veh,o’

Sequence length T, ., Matrix of

0
T'VehicteLiparaimu and T’ a2enu-
Output: T'venicle2world for the specific sequence.

1 while ¢ is less than the sequence length T, ., do
ENU LLA
2 | Tien; < Trnzenu X Tygh;
ENU LLA
3 | Tyepo ¢ Trinzenu X Tgp
ENU ENU ENU
4 5Tveh,i A ||Tveh,i - Tveh,o”
T — 6TEWY % 19
5 VehLiDAR2IMU veh VehLiDAR2IMU
i,0 i,0 i i
6 {TVenioaramus P} < {TVentiparaimus P}
7 | for Optimized iteration k € {0,1,--- N} do
=i,k i,k i,k
8 P, < Tyepiiparamu X P o
. =1,
9 Solve min/S", |Pdense — P, |
TVehLiDARZIMU &

10 Obtain the updated matrix of T4 | 5 Aromu

i k41 i k41 '
1 Py  TyenLiparamu X Posi
12 end

i, N

13 TVehicIe2WorId — TVehicIe2WorId U TVehLiDAR2IMU
14 end

15 Return the optimized T'vepicle2wWorld

C.2. Detailed Process of LIDAR Fusion

In this part, we give the detailed calculation process of
T'vehicleoworld for each data sequence. To start with, the
vehicle real-time poses are obtained based on the infor-
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(a) Scene: facing congestion on a sunny day

(b) Scene: Motorbike cut-through during the vehicle U-turn on a rainy day

Figure 12. Visualization of data fusion from all point-based sensors under BEV view. Two key moment of 1720517415.500074 and
1720754211.700128 with different scenes are presented. The gray points and blue points represent the roadside and vehicle-side LIDAR

respectively. The red points are denoted as the roadside 4D Radar. We also plot the ground truth labels of 3D bounding boxes with
different colors, where each color is denoted as a specific category as the same as Fig. 11.
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(a) LIDAR6699 to Camera66 (b) LIDAR6700 to Camera66

(c) LiDAR6692 to Camera62 (d) LiDAR6691 to Camera61

Figure 13. Roadside LiDAR/Camera calibration results. The
various point color represent the relative distance to the origin.

mation of GPS/IMU, we denote the location as T'gps =
[Tiong, Tiat, Tai] in Longitude-Latitude-Altitude (LLA) co-
ordinate and the orientation as Ry (92, Gy Gz, Gu)

based on a quaternion form. In the following, we use T\';L‘,ﬁi

to depict the vehicle pose at i" frame in LLA coordinate,
which can be written as:

Ri1 Ri2 Riz Tiong
R TGPS] _ |R21 Roa Raz  Tiat
0 1 | |Rsi Rs2 Rsz Tar
0 0 0 1

Tveh,i = |:

[
Where the Rjyy3 can be calculated by:

2(44: + Gyquw) |
2(Qy‘]z — G2 Gw)
1-2(q2 +q3) |
2

To obtain the transformation matrix of T'vepicleoWorld 11
time-varying, we firstly need to determine an original ve-
hicle pose in the road section. We random collect the ve-
hicle GPS/IMU information of T-5* under a static state

veh,o

1—2(q2 +¢2)
2(‘]9ch + QZQw)
Q(QxQZ - Qwa)

2(Q$Qy - QZQw)
1—-2(¢2 +¢2)
2(qyq- + 42 qw)




(a) Intersection A ( , 6692)

(b) Corridor (

, 6694) (c) Intersection B (6699, , 6701)

Figure 14. Visualization of the annotations in roadside LiDARs. We illustrate three combinations of different types of LIDARs, where

the different point clouds under each layout are colored by

, Dark Blue and Gray.

(a) Camera 61

(b) Camera 66

(c) Camera 73

Figure 15. Visualization of the annotations in roadside cameras. Three typical views from roadside cameras with labeled 3D bounding
boxes are selected for illustration, where the dark transparent side represents the moving orientation.

as the initial pose matrix. Then we use the calibrator to
calculate the transformation matrix of T, ipar2imy Which
can project the LiIDAR points to the IMU coordinate system
at this specific moment. The following calculation process
is demonstrated in Alg. 1. Directly using the matrix may
cause large projecting error due to inaccurate GPS/IMU in-
formation, hence we apply the optimization method of ICP
to reduce the calibration errors as shown in the line 9 of
Alg. 1. Particularly, we build a road map with dense point
cloud, which is regarded as the high precision reference for
aligning both the roadside and vehicle-side point cloud data.

We provide more visualization of the finial point cloud
fused results as shown in Fig. 12 by projecting the vehicle-
side LiDAR to the roadside combined point cloud using the
refined T'vehicleoWorld and T'Ligaroworld -

D. More Details of the Annotation

V2XScenes have 332596 labeled 3D bounding boxes in to-
tal based on human expert experiences with various cate-
gories. Fig 14 illustrates three typical layouts of sensors
overlapping with labeled data. In general, the ground truth
of 3D bounding boxes in camera view can be obtained based
on the calibration results. Considering the calibrating errors

and the different field of view overlapping rates, we also
annotate 315439 labels for roadside and vehicle-side cam-
era by employing the expert annotators. Fig 15 and Fig 16
demonstrate the annotation results of 3D bounding boxes
under some typical camera views.

Detailed statistics of the labeled ground truth with dif-
ferent categories are demonstrated in Fig. 17, we summa-
rize the 8 categories into four main class of “pedestrian”,
“car”, “bus” and “bicycle”. We can see the object distri-
bution of the overall road section from the estimation of
distance density, where the defined original point of the
zero distance is near to the intersection B. For instance, the
category of “car” has a larger density under the range of
0-300m, which shows the vehicle flow is usually greater
than intersection B. In addition, the distance distribution of
“pedestrian” and “bicycle” are more focused in the mid-
dle, which is consistent of the common fact.

V2XScenes has an average of around 10k and 3k 3D
bounding boxes for each scene under roadside and vehicle-
side view respectively. Our V2XScenes is characterized
with a wide variety and quantity of roadside participants
due to the large perception range.



(c) Left camera

(d) Back left camera (e) Back right camera (f) Right camera

mﬁy

(a) Front left camera

Figure 16. Visualization of the annotations in vehicle-side camera.
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Figure 17. Distribution of labeled bounding boxes for Car, Bus, Bicycle and Pedestrian. The red line represent the density estimation
based on the Gaussian kernel. We calculate the distances between the origin position and labeled positions in global coordinates.
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Figure 18. Visualization of collaborating with heterogeneous data under different weather conditions. The fused point cloud is

colored by black. The ground truth and predictions are represented by green and red respectively.
cloud (from 128-beams mechanical rotating LiDAR, 125-

E. More Experiments and Visualization
beams solid-state LiDAR and 4D millimeter-wave Radar)
in the intersection B of V2XScenes. We set up the same
intermediate fusion method to compare the results of fusion
perception by providing different types of roadside point-

E.1. More Experimental Results
based data. The results of ablation are presented in Tab. 6

To investigate the impact of heterogeneous data (e.g. differ-
ent types of point cloud data) on the collaboration percep-
tion, we add ablation experiments using three different point
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Figure 19. Illustration of more example scenes under multiple challenging conditions.

Table 6. Ablation study on collaboration with heterogeneous
data. ’S” and "M” denote solid-state LIDAR and mechanical Li-
DAR, respectively. CoBEVT is used for all settings.

and we also provide the visualization of cooperative 3D ob-
ject detection under different fused heterogeneous data as
shown in Fig. 18.

E.2. More Examples of Multi-Condition Scenes Car APsp of Sunny
Fused source
In this section, we provide more example scenarios of the IoU=03 IoU=0.5 IoU=0.7
multi-condition challenging data sequences in V2XScenes. With Radar 02.03% _ 89.16%  67.26%
As shown in Fig. 19, each scene is labeled with a spe- With S-LiDAR | 91.04%  88.81%  72.64%
ci'ﬁc description, where it can l?e observefi that we cgllect a With M-LiDAR | 82.54%  76.97%  50.15%
high quantity of traffic congestion scenarios under different Car AP3p, of Rainy
weather conditions. For instance, the camera of the vehicle Fused source
is basically covered by water when driving in heavy rainy IoU=0.3 IoU=0.5 IoU=07
night, which seriously affects driving safety. Despite this, With Radar 46.12%  27.60%  11.74%
the roadside sensors can still provide the key perception in- With S-LiDAR | 46.26%  34.19%  16.41%
formation for single vehicle to ensure the safety. With M-LiDAR | 50.66%  34.98%  11.51%
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