
VQ-SGen: A Vector Quantized Stroke Representation for
Creative Sketch Generation

Supplementary Material

In this supplemental material, we provide further details
on dataset processing, technical design, codebook explo-
ration, and additional discussions.

A. Data Preprocessing and Augmentation
To enhance the model’s performance and improve the qual-
ity of the training data, we adopt a series of preprocessing
steps as shown in Fig. A1. Firstly, strokes that have the
’details’ part label (e.g., the sun, the ground, and the deco-
rative dots) are moved, as these may introduce noise or un-
necessary complexity. Secondly, excessively long strokes
are eliminated to maintain a balanced distribution of stroke
lengths (e.g., the over-sketched pattern in the tail of the third
creature), preventing outliers from disproportionately influ-
encing the model. Lastly, shorter strokes that are connected
are merged into a single stroke to maintain a better stroke
structure. For instance, the wing in the second image (high-
lighted with a red box) is composed of multiple connected
strokes that are merged into a single stroke, which ensures
more coherent and natural groupings within the sketches.

Besides preprocessing, we employ a comprehensive aug-
mentation strategy at both the stroke and sketch levels. At
the stroke level, transformations such as rotation, transla-
tion, or scaling are applied to one or more randomly se-
lected strokes. These operations diversify the stroke repre-
sentations and improve the model’s ability to generalize to
various configurations. At the sketch level, the entire sketch
is subjected to global transformations, including rotations or
random removal of specific strokes, simulating incomplete
or imperfect inputs.

B
ef

or
e

A
ft

er

Figure A1. The demonstration of our data preprocessing.

B. Training and Inference Details
Implementation details. We use Adam optimizer [1] for
training both the VQ-Representation and Gen-Transformer,
while the learning rates are set as 10−4 for the former

and 10−5 for the latter. We use step decay for VQ-
Representation with a step size equal to 10 and do not
apply learning rate scheduling for Gen-Transformer. We
train our network on 2 NVIDIA V100 GPUs. The VQ-
Representation network training takes around 20 hours with
a batch size of 64. The Gen-Transformer is trained until
convergence taking around 10 hours with a batch size of 8.
The maximum stroke length N is 20 for Creative Birds and
35 for Creative Creatures to make sure it fits all the sketches.
Stroke latent embedding esi is a vector in R256. The number
of codes V = 8192, and the code dimensions of both code-
books are 512. Stroke category number C = 8 for Creative
Birds and 17 for Creative Creatures. The balancing weight
α = 0.8.
Training Strategy. We have three training stages. In
the first stage, we train the stroke latent embedding auto-
encoder. Once it is trained, both the encoder and decoder
are fixed. In the second stage, we train the vector quantiza-
tion auto-encoders and the corresponding codebooks. Sim-
ilarly, once the network is trained, the three components are
fixed. In the last stage, we train the cascaded generation
decoders together, with the help of the aforementioned net-
works and codebooks. Note that, we follow [2] to address
the teacher-forcing gap.
Teacher Forcing Gap. Teacher-forcing strategy is widely
used for Transformer training. However, it introduces the
exposure bias issue by always feeding the ground truth in-
formation to the network at training time but exploiting the
inferior prediction at testing time. To overcome this issue,
we follow [2] to mix the predicted stroke information with
the ground truth information. The ratio of the ground truth
strokes gradually decreases from 1.0 as the training pro-
gresses.
Sampling at Inference. Starting with a special STR token,
the inference process of our VQ-SGen generates a sketch
by sequentially sampling each subsequent element of the
stroke sequence until reaching an END token. Each predic-
tion step consists of two stages: (1) generating a minimal set
of codes for sampling, comprising the top options whose
cumulative probabilities exceed a threshold pn, while ig-
noring other low-probability codes; (2) performing random
sampling within this minimal set based on the relative prob-
abilities of the codes. This approach ensures diversity in
the predicted code sequence while reducing the risk of sam-
pling unsuitable or irrelevant codes.

C. Location Codebook Probing

Table A1. Statistical comparison and ablation studies of the hy-
perparameter setting of the location codebook.

Methods
Creative Birds Creative Creatures

IoU(↑) FID(↓) GD(↑) CS(↑) IoU(↑) FID(↓) GD(↑) CS(↑) SDS(↑)
2048×512 0.912 17.43 17.54 0.47 0.901 20.34 15.75 0.51 1.72
4096×512 0.943 16.15 18.68 0.51 0.923 18.32 16.54 0.55 1.79
4096×1024 0.954 16.31 18.53 0.52 0.934 18.07 16.86 0.56 1.81

Ours(8192× 512) 0.963 15.78 18.92 0.53 0.957 17.61 17.42 0.57 1.86

Similar to the shape codebook, we investigated the config-
uration of the location codebook, in terms of the effects of
its hyper-parameter setting on its representation ability and
sketch generation. For the codebook size, we choose 2,048,
4,096, or 8,192, while for the feature size, we choose 512 or
1,024. Quantitative and qualitative experiments as shown in
Fig. A2 and Tab. A1, respectively.

For the codebook representation ability, we investigate it
via its reconstruction. For any location triplet, we recover
its bounding box representation. Fig. A2 displays the input
and reconstructed bounding boxes. We overlay the input
sketch for better visualization. As can be seen, varying the
codebook size or the feature size indeed impacts the rep-
resentation ability, while our final choice obtains the best
reconstruction. Additionally, we employ the mean IoU (In-
tersection over Union) of bounding boxes as a statistical
measurement in Tab. A1, where the best IoU is achieved
from our final choice. As for the sketch generation, we
only measure the statistical metrics as in Tab. A1. Not sur-
prisingly, our choice is the best. Although increasing the
codebook size further may potentially enhance generation
quality, similar to the findings with the shape codebook, we
have not yet confirmed whether a larger codebook consis-
tently yields performance improvements. Therefore, select-
ing the appropriate codebook size requires balancing gen-
eration quality and computational cost and may depend on
the specific requirements of the task. A similar conclusion
is drawn as in the shape codebook analysis, i.e., we did not
enumerate all the configurations, and thus cannot guarantee
the optimal configuration.

D. Creativity Comparison with Diffsketcher
As presented in Sec. 5 in the main paper, our method can be
easily adapted to do text-to-sketch generation, which aligns
not exactly the same but closer with the goal of Diffsketcher
[6]. However, we argue that the sketches they generated
possess high realism and conform to conventional imagi-
nation since they are trained on realistic images. Fig. A3
displays a comparison. For Diffsketcher, we use a com-
mon prompt template - ‘A bird is [input text]’, except
[Just dance], for which we use ‘A bird is performing [just
dance]’. Different random seeds and prompt templates are
tested, but their sketches do not differ too much.

As can be seen, our sketches, e.g., the smiling bird or

Original 2048×512 4096×512 4096×1024 Ours

Figure A2. Visualization results of bounding box reconstruction.
Note that the sketches are not generated, we overlay the input
sketch to better perceive the bounding box placement.

 Just dance

Falling

 Smiling

Looking up

Ours DiffSketcher

Figure A3. The visual comparison with Diffsketcher [6] on the
text-to-sketch application.

the falling bird, are much more plausible, conforming with
input text and representing more creative concepts, while
their corresponding sketches cannot faithfully explain the
text, limited to conventional bird sketches. Besides, their
sketches usually have background strokes due to a different
goal in the generation, e.g., the tree branches. Especially,
the dancing person is wrongly generated by their model,
since it was fooled by the word dance, and cannot link the
concept of dance with a bird. On the other hand, our method
is over two magnitudes faster (i.e., 0.86s vs. 153s), making
us both efficient and effective in the text-driven sketch gen-

“Just Dance”

“Smiling”

(10, 20.0) (20, 50.0) (35,100.0)

(10, 20.0) (20, 50.0) (35,100.0)

Ours (10, -)

Ours (12, -)

(#, CFG)

(#, CFG)

Figure A4. More DiffSketcher comparison [6] with varying num-
bers of strokes and CFG weights.

Initial

.,,,;::: <

Target

1

Figure A5. Two code interpolation examples, where the interpola-
tion is executed from the initial to the target strokes (left to right).

eration task.
In order to generate more abstract sketches comparable

to ours, two extra hyperparameters can be tuned in DiffS-
ketcher - the number of strokes and the classifier-free guid-
ance (CFG) weight. As shown in Fig. A4, we gradually
increase the number of strokes as well as the CFG weight
in two examples. When the stroke count is low (10 or 20
strokes), their sketches are too abstract to be recognizable.
The smiling bird with 35 strokes starts focusing on realistic
head details, but it falls short of creativity.

E. Further discussions

Code space interpolation. To further validate the cluster-
ing effects of the discrete code space, we conduct code in-
terpolation experiments. Fig. A5 demonstrates two such ex-
amples. The interpolation is executed from the initial stroke
to the target stroke (left to right). We first use linear α-
blending to mix the two codes, and then fetch the closest
code entry in Ds and decode it into a stroke image. We
march 10 steps to achieve the target. As can be seen, the
initial and target strokes can be meaningfully interpolated
in the discrete code space.
Limitations. Our method has the following limitations:
First, we did not extensively explore all combinations of
codebook hyperparameters, so our current configuration
may not be globally optimal. This could impact the qual-
ity of our model’s generated results. For example, in
Fig. A6(a), the wings exhibit stroke disconnection and blur-

(a) (b)
Figure A6. The demonstration of failure cases.

ring issues. Efficient hyperparameter search could poten-
tially lead to improvements. Second, due to the decoupling
of shape and position, we occasionally observe that the gen-
erated bounding box may fail to cover all strokes, resulting
in a “hard cropping” of the outermost stroke. The strokes in
the wings and head in Fig. A6(b) have experienced varying
degrees of “hard cropping”. Introducing a coverage regu-
larizer could help address this issue. We leave the two as
future work.

O
ri

gi
na

l
 S

ke
tc

h
R

ec
on

st
ru

ct
ed

Sk

et
ch

Figure A7. Sketch reconstruction on QuickDraw sketches.

Shape codebook generalization. Our learned shape code-
book demonstrates strong generalization ability to unseen
sketches from other datasets, even without the need for fine-
tuning. This indicates that the learned representations cap-
ture fundamental structural patterns of sketches, enabling
effective reconstruction across different data distributions.

Fig. A7 presents several examples of sketch reconstruc-
tion from the QuickDraw dataset [3]. As shown in the fig-
ure, our shape codebook successfully reconstructs diverse
sketches with high fidelity, preserving key structural details
and stroke arrangements. The ability to generalize across
datasets highlights the robustness of our learned represen-
tations, suggesting their potential applicability in various
sketch-based tasks, such as sketch recognition, generation,
and editing. Furthermore, the high-quality reconstruction
results indicate that our codebook effectively captures es-
sential shape priors, making it a versatile tool for sketch-
related applications without requiring additional domain-
specific adaptations.
Point sequence encoding Following ContextSeg [5], we
use stroke bitmap sequences rather than point sequences to
represent sketches. The latter yields inferior reconstructions
(see Fig.5 in [5]). We conducted further statistical analy-
sis in our generation scenario (it is segmentation in Con-

textSeg). Specifically, we replace the CNN with Sketch-
former [4] (a Transformer), and train the VQ-VAE and
our generator. In terms of reconstruction, Sketchformer
only yields Acc=0.44/Rec=0.32, which is far below ours
(Acc=0.96/Rec=0.97). As for the generation, our advan-
tages are more obvious (theirs vs. ours): 75.42 vs. 15.78
(FID↓), 12.31 vs. 18.92 (GD↑), 0.16 vs. 0.53 (CS, close
to and >0.45 is better), confirming the advantage of bitmap
encoding.

F. Detailed Network Configuration

Intuitively, the stroke shape embedding and the learning of
the codebook could be achieved simultaneously. However,
the network responsible for learning stroke shape embed-
dings needs to be applied individually to each stroke to ef-
fectively capture its structural details, whereas the learn-
ing of the codebook must consider the entire sequence of
strokes, performing the compression in the sketch level.
Consequently, achieving optimal performance is challeng-
ing when attempting to combine these tasks. Therefore, we
propose to handle them separately. To this end, we first con-
vert each stroke into a latent embedding and further com-
press them in the latent space.

Figure A8 illustrates the detailed structure of our net-
work. The embedding network has an encoder-decoder
structure, accepting the grayscale stroke image input aug-
mented with x and y coordinate channels. Specifically, the
encoder comprises a total of 10 layers, which are grouped
into four blocks. Each block is characterized by distinct
feature dimensions (i.e., 64, 128, 256, and 512, respec-
tively), resulting in a stroke embedding in R256. Both de-
coder branches share the encoder structure, working sym-
metrically to transform the stroke embedding into stroke re-
construction and the distance map as in [5].

We also illustrate the detailed network architecture of our
tokenizing network, which is used for learning the shape or
location codebook. The input is a feature matrix in RN×256

composed of shape or location embeddings within a sketch.
A Conv1d layer is first employed for feature extraction, fol-
lowed by a MaxPool layer or ConvTranspose1d layer to
compress or expand the feature dimensions. Specifically,
the encoder comprises 8 layers grouped into three blocks,
each characterized by distinct feature dimensions (i.e., 256,
256, and 512), resulting in a feature of RN×512. The “x3”
and “x2” of each block in Fig. A8 mean that the block is re-
peated 3 or 2 times. Subsequently, the feature correspond-
ing to each stroke is replaced with the nearest code and then
fed into the decoder. Both decoder branches share the en-
coder structure. The final output aims to reconstruct the
latent input.

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[2] Tsvetomila Mihaylova and André FT Martins. Scheduled
sampling for transformers. arXiv preprint arXiv:1906.07651,
2019. 1

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PmLR, 2021. 3

[4] Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and
Moacir Ponti. Sketchformer: Transformer-based representa-
tion for sketched structure. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
14153–14162, 2020. 4

[5] Jiawei Wang and Changjian Li. Contextseg: Sketch semantic
segmentation by querying the context with attention. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3679–3688, 2024. 3, 4

[6] Ximing Xing, Chuang Wang, Haitao Zhou, Jing Zhang, Qian
Yu, and Dong Xu. Diffsketcher: Text guided vector sketch
synthesis through latent diffusion models. Advances in Neural
Information Processing Systems, 36:15869–15889, 2023. 2, 3

BatchNorm & Relu

Conv2D-64

BatchNorm & Relu

Conv2D-128

BatchNorm & Relu

Conv2D-256

BatchNorm & Relu

Conv2D-512

BatchNorm & Relu

Conv2D-256

BatchNorm & Relu

Conv2-512

BatchNorm & Relu

Conv2D-128

BatchNorm & Relu

Conv2D-64

BatchNorm & Relu

Conv2D-256

BatchNorm & Relu

Conv2D-512

BatchNorm & Relu

Conv2D-128

BatchNorm & Relu

Conv2D-64

cCo

Shape Embedding
256

Input Sketch Reconstruction Result Distance Prediction

Flatten & MLP MaxPool Conv Transpose

×3

×3

×2

×2

BatchNorm & Relu

Conv1D-256

BatchNorm & Relu

Conv1D-256

BatchNorm & Relu

Conv1D-512

Conv1D-256

BatchNorm & Relu

Conv1D-512

BatchNorm & Relu

BatchNorm & Relu

Conv1D-256

… …

0 1
…

C
od

eb
oo

k

×3

×3

×2

Shape/Location
Embedding

Reconstruction
Embedding

(a) Embedding Network (b) Tokenizing Network

Figure A8. Detailed structure of our embedding networks and tokenizing network.

