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A. Appendix

A.1. Rendering videos
We provide RGB and Depth rendering videos of the
reconstructed scenes in the project page: https://
vistadream-project-page.github.io/.

A.2. Implementation details of VistaDream
A.2.1. Coarse Gaussian field generation
Image description with VLM. We use LLaVA [14] to gen-
erate a detailed description for the input image. The LLaVA
prompt is set as: “⟨image⟩ USER: Detailly imagine and de-
scribe the scene this image is taken from? ASSISTANT: This
image is taken from a scene of ”. The continuation of the
LLaVA response is used as the image description and fed
to inpainting models in the Coarse scene reconstruction. As
shown in Fig. A.1, the inpainting results using LLaVA de-
scription is much better and detailed.
Building a 3D scaffold. The H × W input image is en-
larged to 1.9H × 1.9W by extending in four directions and
inpainted using Fooocus [21] with LLaVA image descrip-
tion. Subsequently, we can recover the per-pixel depth d and
image focal length f using a metric depth estimator such as
Metric3Dv2 [11] or Depth-Pro [2], thereby recovering the
3D points corresponding to each pixel. We follow the de-
fault hyperparameter settings of the above models. After-
ward, we follow pixelSplat [3] to construct Gaussian ker-
nels for each pixel: the xyz property of the Gaussian kernels
is its 3D position, the RGB property comes from the pixel
color, the opacity property is set to a constant, the rotation
property is an identity matrix, and the scale is set to d/

√
2f .

To avoid trailing artifacts, we eliminate kernels in object
boundary regions based on depth variation judgment [18]
and then optimize the remaining Gaussian kernels by 100
iterations [12]. For Gaussian kernel optimization, we set
the learning rate of the xyz property to 3e-4, RGB to 5e-4,
scale to 5e-3, opacity to 5e-2, rotation to 1e-3.

Figure A.1. Detailed description from LLaVA is vital for inpaint-
ing. Compared to (b) empty descriptions or (c) short captions,
(d) descriptions from large Vision-Language Models are more de-
tailed, significantly enhancing the reliability of inpainting.

Warp-and-inpaint. After scaffold initialization, we estab-
lish a spiral camera trajectory. Then we select the view-
point with the largest missing regions to render both the
partial RGB image and depth map. The RGB image is in-
painted by Fooocus [21]. Taking the completed image as the
condition, we use a model ϕ to estimate its depth map and
optimize the depth for smoothly connecting to the existing
Gaussian Field. We have two strategies for setting ϕ. The
first strategy uses a diffusion model-based GeoWizard [8]
to estimate depth. To ensure smooth connections, we intro-
duce a loss between the estimated depth and the rendered
one at each denoise step [20]. The second strategy employs
a feedforward depth estimation model, DepthPro [2], to es-
timate image depth. We linearly align the estimated depth
with the rendering one, and further optimize the estimation
through residual smoothing [5]. The first strategy is more
time-consuming but yields better results, while the second
strategy is faster but may introduce distortions. In different
cases, we adopt the strategy that provides better outcomes.



Then, we construct a set of Gaussian kernels on the com-
pleted RGB-D regions as above. We filter them with two
additional checks: 1) Occlusion avoidance: We project the
Gaussian center onto already processed viewpoints, and if
its depth is less than the original depth at any viewpoint, it
is discarded. 2) Boundary exclusion: we remove the kernels
on the object boundaries as mentioned above. The remain-
ing kernels are integrated into the Gaussian field. This is
followed by a 256-step scene optimization process. The
above “warp-and-inpaint” process is iteratively executed
several times to obtain the coarse Gaussian field.

A.2.2. Multiview Consistency Sampling for Refinement
Multi-view Consistency Sampling. In our implementa-
tion, we uniformly sample N = 8 views along the spiral tra-
jectory, with an image resolution of 512× 512. Afterward,
we encode and add T = 10 steps of noise to each view by a
50-step DDPM sampler [9]. We use the Latent Consistency
Model of Stable Diffusion (LCM-SD) [15] for noise predic-
tion for its strong performance following DreamLCM [22].
We remove Classifier Free Guidance (CFG) in LCM and
find better results without it. We perform weighted recti-
fication and std-alignement of Eq. 3 of Sec.3.2.1 of main
paper on the predicted and rectified noise map ϵ̂ and ϵ̄ for
direct operations in latent space. ϵ has a linear relationship
with µ according to Eq.1 of Sec.3.2.1. In each sampling
step of MCS, we use the denoising multi-view images to
optimize a copy of the coarse Gaussian field by 2560 steps
to enforce consistency, where we set a smaller learning rate
of xyz in Gaussian kernels, specifically 1e-4, to avoid geom-
etry distortions.
Gaussian field refinement. In our implementation, we op-
timize the coarse Gaussian Field by 2560 steps with the re-
fined multi-view images and enlarged input image.

To run VistaDream within a 24GB VRAM limit, we need
to allocate some time for model swapping. Specifically, we
transfer only the currently active model to the GPU while
keeping the others in CPU memory. This ensures efficient
memory usage to maintain the overall workflow’s integrity.

A.3. LVM-IQA metrics
Typical perception metrics such as PSNR and SSIM need
pixel-wise ground truth (GT) of novel views, which is hard
to acquire for our task. Instead, we use VLM-based metrics,
as VLMs can understand and evaluate images well without
requiring GT as proven by LLaVA [14], InternVL [4], and
Qwen2.5-VL [1].

Given a set of rendered images, we perform the Im-
age Quality Assessment using the above LVMs, called
LVM-IQA. The prompt is designed as: “⟨image⟩ USER:
⟨question⟩, just answer with yes or no? ASSISTANT:”. The
⟨question⟩ placeholder is replaced according to different
evaluation purposes as follows:

Coarse GS reconstruction (s) MCS Refine (s per step) Overall
(min)LLaVA

Describe
Zoom-out
&Inpaint

Warp&Inpaint
(per step)

µ̂
Sample

3D GS
Optimize

Stepwise
Denoise

2.00 36.87 11.69 0.36 11.05 0.41 6.86

Table A.1. Average time consumption of VistaDream to recon-
struct a scene. In our default setting, we conduct 10 warp&inpaint
steps in coarse GS reconstruction and 10 denosing steps in MCS.
“Overall” includes the time spent on model loading and I/O oper-
ations.

• For noise level (Noise-Free): “Is the image free of noise
or distortion”

• For sharp edge (Edge): “Does the image show clear ob-
jects and sharp edges”

• For scene structure (Structure): “Is the overall scene co-
herent and realistic in terms of layout and proportions in
this image”

• For image details (Detail): “Does this image show de-
tailed textures and materials”

• For image quality (Quality): “Is this image overall a
high-quality image with clear objects, sharp edges, nice
color, good overall structure, and good visual quality”

We then calculate the proportion of “yes” responses and re-
port the average result of the five aspects.

We use 11 scenes from RealmDreamer [17] for quantita-
tive assessment, including bathroom, bear, bedroom, bust,
kitchen, living-room, car, lavender, piano, victorian, and
steampunk. For each scene, we sample 50 viewpoints along
the reconstruction trajectory for rendering and evaluation.

A.4. More analysis
Detailed time consumption of VistaDream. The time con-
sumption details of VistaDream to reconstruct a scene is
shown in Table A.1, where we conduct 10 warp&inpaint
steps in coarse GS reconstruction and 10 denosing steps
in MCS. It can be seen that VistaDream requires ∼ 7
minutes to reconstruct a scene, which is much faster than
optimization-based RealmDreamer (2.5 hours) [17].
Choice of wt in Eq. 3 in Sec.3.2.1 of main paper.
In Fig. A.2, we show qualitative results using different
wt. When wt = 0, the multi-view images are optimized
independently to obtain high-quality but inconsistent im-
ages, yielding noisy and chaotic details after optimizing the
scene. As the value of wt increases, the consistency guid-
ance is strengthened, leading to more accurate scene opti-
mization. However, some finer details may be lost in this
process to satisfy consistency. Empirically, we found that
setting wt between 0.3 and 0.8 achieves optimal results,
striking a balance between detail enhancement and overall
coherence. In this section, as well as in the “Compare MCS
with SDS refinement” section in main text, we did not opti-
mize the scene with the input image and outpaint image, in
order to more accurately reflect effects of SDS and MCS.
VistaDream with sparse view inputs. VistaDream also
supports sparse-view inputs. As shown in Fig, A.3, given



Figure A.2. Set different wt in Eq. 3 in Sec.3.2.1 of main paper. When wt is set to 0, the optimization of the Gaussian scene lacks
multi-view consistency, leading to chaotic reconstructions and noisy details. As wt increases, multi-view consistency improves, facilitating
a more accurate optimization of the Gaussian field but slightly loses some details.

Figure A.3. VistaDream with sparse inputs. (a) Input sparse views (2 images). (b) Novel view renderings from the SoTA sparse-view
reconstruction method, InstantSplat, leave gaps in unseen regions. (c) VistaDream effectively reconstructs a complete scene using warp-
and-inpaint and MCS.

Methods NF Edge Struc. Detail Quality Avg.
InstantSplat 0.39 0.09 0.34 0.83 0.41 0.41
NVComposer 0.75 0.26 0.52 0.96 0.68 0.63
Ours-Coarse 0.66 0.23 0.56 0.89 0.62 0.59
Ours 0.80 0.45 0.75 0.94 0.76 0.74

Table A.2. LLaVA-IQA results with sparse-view inputs.
unposed sparse views, existing sparse reconstruction meth-
ods are unable to reconstruct unseen regions, resulting in
substantial gaps. In contrast, VistaDream can reconstruct a
complete scene. Specifically, we use Dust3r [19] to recover
the relative poses and build a 3D Scaffold with the sparse in-
puts, then apply the warp-and-inpaint strategy with LLaVA
prompt guidance to fill in the missing regions. MCS is used
for scene optimization based on this foundation.

In Table A.2, we quantitatively compare the scene re-
construction performance on 7 scenes between VistaDream,
InstantSplat [7], and concurrent NVComposer [13], given 2
input images. We modify LLaVA questions to add ”regard-

less of large black regions” to ensure a meaningful eval-
uation of InstantSplat scenes with missing regions (zeros
or else). Our method achieves an 11% average improve-
ment. On these scenes, MCS achieves 15% average im-
provements, which further verifies the effectiveness of the
proposed MCS on scene optimization.

A.5. More ablation studies

Ablating scaffold construction in VistaDream. In Ta-
ble A.3, we ablate our core designs in the first stage of Vis-
taDream.
a) Global Scaffold by Zoom-out&Inpaint. We propose to
build a 3D scaffold for better inpainting connections by
zoom-out&inpaint operation. This brings a 5% average
improvement for VistaDream by comparing model-a and
model-b in Table A.3. It is because the scaffold provides a
reliable initialization and constraint for most regions of the



Figure A.4. Ablating 3D global scaffold in coarse scene recon-
struction. (a) Replacing our zoom-out scaffold with moving-based
scaffold of RealmDreamer yields distorted scenes and unwanted
human regions. (b) Reconstructing with short captions of BLIP2
as inpaint prompt yields telescope-like or mirror-like images. (c)
Using full designs improves the scaffold and scene quality.

Id Scaffold Prompt NF Edge Sturc. Detail Quality Avg.
(a) None BLIP2 0.85 0.13 0.47 0.93 0.54 0.58
(b) Ours BLIP2 0.89 0.21 0.50 0.92 0.63 0.63
(c) Ours LLaVA 0.91 0.29 0.54 0.97 0.71 0.68
(d) Moving LLaVA 0.89 0.23 0.52 0.93 0.69 0.65

Table A.3. Ablating the coarse stage of VistaDream. For 3D
scaffold construction, “Ours” means our zoom-out&inpaint strat-
egy, “None” means we directly conduct warp-and-inpaint with-
out building a scaffold, “Moving” denotes the camera moving-
based scaffold construction from RealmDreamer [17], specifically
largely outpainting the scene scope on multiple neighboring views
using advanced Depth-Pro for depth estimation and Fooocus for
inpainting. For the inpaint prompt construction, “BLIP2” means
the short description from BLIP2, “LLaVA” denotes using the de-
tailed descriptions from LLaVA as inpainting instruction. We use
LLaVA for Image Quality Assessment here.

scene, as also proven by previous methods [10, 17]. With-
out this operation, the scene may exhibit severe geometric
distortions caused by the unstable out-/in-painting[17].
b) Prompt inpainting with LVM. Using the zoom-out oper-
ation is non-trivial. Leveraging rich textual prompts from
large vision models (LVMs) for inpainting demonstrates
significant enhancements in the quality of warp&inpainted
regions. Compared to the short descriptions generated by
BLIP2, this strategy achieves a 5% average quality im-
provement by comparing model-b (Fig. A.4b) and model-
c (Fig. A.4c) in Table A.3, greatly avoiding unwanted
telescope-like or mirror-like artifacts. Note that the quan-
titative results gains 10% in the coarse stage by eliminating
large scene distortion with our designs. Removing large dis-
tortions is easier than MCS which improves the quality and
details of the un-distorted scene. Though difficult, our MCS
achieves better quality and gains a further 4% improvement.
Replace zoom-out with typical moving-based scaffold.
Previous methods [10, 16, 17] construct moving-based scaf-
folds by moving cameras to neighboring viewpoints to
largely outpaint the 3D scene on them They suffer from in-

consistent geometric connections across the multiple out-
painted views, yielding distorted scaffold and final scene.

In VistaDream, we find that a single-step zoom-out op-
eration, though simple, suffices to initialize a more reli-
able scaffold, which not only ensures texture consistency
but also significantly enhances the connectivity accuracy
of subsequently inpainted regions. In Table A.3, by com-
pare model-c (Fig. A.4c) and model-d (Fig. A.4a), our scaf-
fold construction achieves 3% average improvement. Note
that we adopt advanced Depth-Pro for monocular depth es-
timation, Fooocus for inpainting, and our other designs in
moving-based scaffold for a fair comparison with our zoom-
out strategy.
Improve other reconstruction methods with MCS. In Ta-
ble 2 of main paper, we apply MCS to other reconstruc-
tion methods, specifically single-view based Realm-DP and
sparse-view based InstantSplat. We re-implement Realm-
Dreamer [17] and use an advanced monocular depth esti-
mation method Depth-Pro [2], denoted by Realm-DP, all
other settings are the same as the main experiment. For
InstantSplat, we further introduce additional boundary ex-
clusion for improvement and better visual quality. All other
settings are the same as Table A.2.

A.6. Additional qualitative results
Given various input images, the results in Fig. A.6 and
Fig. A.7 demonstrate that VistaDream produces clear, ac-
curate, and highly consistent 3D scenes. In Fig. A.8, Vis-
taDream achieves scene reconstruction from text inputs by
incorporating a text-to-image generation model [6]. More-
over, in Fig. A.9, our method can generate different plausi-
ble scenes using different random seeds.

A.7. Limitations
MCS Refinement might lose details. Enforcing multi-
view consistency might lose some details. Typical SDS
smooth scenes for detail conflicts across denoised multi-
views in different iterations. Comparing with SDS, the pro-
posed MCS mitigates detail conflicts by enforcing consis-
tency in multiview denoising and preserves more scene de-
tails. However, the details cannot be fully preserved. In
future work, we will explore adaptive optimization region
selection in MCS to further enhance multi-view clarity and
consistency for better details.
Backside generation limitation. Generating backside re-
gions for corners or 360° paths remains hard for Vis-
taDream. Such areas are outside scaffold coverage and rely
solely on warp&inpaint. However, when the camera moves
back, front Gaussians may be warped there and corrupt in-
painting (Fig. A.5a). NVS methods like SEVA can halluci-
nate backsides during multi-view synthesis, but may suffer
from noise or blur for multi-view inconsistency. MCS can
also improve them (Fig. A.5b-c).



Figure A.5. Generate occluded backside regions.

Holes and floating artifices. In the warp&inpaint stage,
inaccurate depth estimation for edge regions or small ob-
jects leads to holes or floating artifacts when changing
viewpoints. Although MCS reduces distortions and noise
to some extent as shown in Fig.7 of the main paper, we
acknowledge that it does not fully address severe miss-
ing regions or significant distortions, as demonstrated in
Fig. A.10. Improving the quality of depth estimation may
solve these issues, which we leave as future work.
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Figure A.6. Image-to-3D scenes. In each example, VistaDream generates a 3D Gaussian field based on the input image (red box), which is
capable of rendering novel view images (orange box).



Figure A.7. Image-to-3D scenes. In each example, VistaDream generates a 3D Gaussian field based on the input image (red box), which is
capable of rendering novel view images (orange box)



Figure A.8. Text-to-3D scenes. In each example, we use Stable Diffusion 3 to generate an image based on the input text (marked in yellow).
Subsequently, VistaDream generates a 3D Gaussian field from the input image (red box), which can be used to render novel view images
(orange box).



Figure A.9. Different plausible scenes generated by VistaDream from the same input image.

Figure A.10. Typical failure cases. Significant distortion (holes and floating artifacts) emerges due to the inaccurate depth estimation of
GeoWizard [8].


