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8. Overview

In this supplementary material, we provide the following
items for a better understanding of our main paper.
• Dataset construction

1. Comparison of different prompts [Sec 9.1]
2. Data evaluation [Sec 9.2]
3. Data Examples [Sec 9.3]

• More Implementation Details
1. More Implementation Details [Sec 10.1]
2. Prompts in inference [Sec 10.2]

• Experiment
1. Details of Action Text to Motion Metrics [Sec 11.1]
2. Explanation on our new Metrics [Sec 11.2]
3. User study Results [Sec 11.3]
4. Generate multiple motion results under Scene Text

[Sec 11.4]
5. Action Texts to Motion Results [Sec 11.5]
6. Scene Texts to Motion Results [Sec 11.6]
7. Hyper-parameters evaluation of Think Model

[Sec 11.7]
8. Evaluation of Think Model prompt [Sec 11.8]

• Network Architectures
1. VQ-VAE Architecture [Sec 12.1]

9. Dataset construction

9.1. Comparison of different prompts
In figures 8, 9, 10, 11, and 12 , we present five types of
prompts and their corresponding results used during the
data construction process. In each example image, the top
section displays the prompt used, while the bottom section
shows the action text alongside the generated scene text cor-
responding to the given prompt. Suitable results are marked
with a green circle, while unsuitable results are marked with
a red cross.

9.2. Data evaluation
Figure 13 shows the results of user evaluations conducted
during the first data validation. A total of 20 participants are
randomly assigned 100 data samples each and classify the
samples into two categories: “reasonable” and “unreason-
able.” Overall, the number of samples classified as “reason-
able” consistently remains high (ranging from 89 to 100),
while the number of “unreasonable” samples remains low
(ranging from 2 to 11). This indicates that the majority of
the data is deemed reasonable by the participants, support-
ing the quality and reliability of the data processing. The
number of “reasonable” samples across participants is rela-

Here is an example where the action sentence is “ a person takes a few steps 
forward and then bends down to pick up something.”
and the corresponding scene sentence is “a person discovers his long lost 
wallet.”
The causal relationship between the two sentences is very close. 
I am now giving you some action sentences, hoping that you can complete 
some scene sentences, which should be the antecedents of the 
corresponding action sentence motions.
The action sentence I am giving you now is <>,I hope you can generate two 
scene sentences for each action sentence.

(a) The final selected prompt

Action text : 
A person jumps sideways to the left.

Scene text : 
A person sees a snake to the right.

A person sees an attacker approaching from the right.

Figure 8. (a) represents the final prompt we adopted, which in-
corporates both contextual example guidance and control over the
quantity of generated results. This prompt effectively balances se-
mantic consistency and the desired output quantity.

Here is an example where the action sentence is "a person takes a few steps 
forward and then bends down to pick up something," 
and the corresponding scene sentence is "a person discovers his long lost 
wallet". 
The causal relationship between the two sentences  is very close.
I am now giving you some action sentences.
When completing scene sentences, please try not to use verbs in action 
sentences. 
The action sentence I am giving you now is <>. I hope you can generate two 
scene sentences for each action sentence.

Action text : 
A person jumps sideways to the left.

Scene text : 
A person in a dynamic position, evading an obstacle.

A person experiencing a moment of surprise in a crowded area.
(b) Limit the use of verbs in prompts

Figure 9. (b) illustrates the results when the prompt includes re-
strictions on the use of verbs contained within the action text. Dur-
ing the generation process, we observed that this prompt often re-
stricts the use of more verbs (not limited to those within the action
text provided), thereby limiting the expressiveness of the scene
text and adversely affecting the generated results.

tively concentrated, fluctuating within the range of 89 to 98,
which suggests a high degree of consistency in the evalua-
tion standards applied by different participants.

9.3. Data Examples
We adopt the same annotation structure as HUMANML3D,
where each line represents a distinct textual annotation con-



(c) Prompt without causal relationship description

Here are some events, and I hope you can summarize in one sentence what 
happened that could have caused such a reaction. 
For example, the action sentence is "a person takes a few steps forward and 
then bends down to pick up something", and the corresponding scene 
sentence is "a person discovers his long lost wallet". 
<miss causal relationship description>
I am now giving you some action sentences, hoping that you can complete 
some scene sentences. 
The action sentence I am giving you now is <>. I hope you can generate two 
scene sentences for each action sentence.

Action text : 
A person jumps sideways to the left.

Scene text : 
A person dodges an incoming object.
A person narrowly avoids an obstacle.

Figure 10. (c) presents the results of our prompt under different
descriptions of the relationship between scene text and action text
sentences. We observed that when the prompt does not explicitly
describe a causal relationship between the two, the quality of the
generated results tends to be imprecise, and unsuitable.

(d) Prompt with no limit on quantity

Here is an example where the action sentence is “a person takes a few steps 
forward and then bends down to pick up something.”
and the corresponding scene sentence is “a person discovers his long lost
wallet.”
The causal relationship between the two sentences is very close. I am now 
giving you some action sentences, hoping that you can complete some 
scene sentences, which should be the antecedents of the corresponding 
action sentence actions.
The action sentence I am giving you now is <>

Action text : 
A person jumps sideways to the left.

Scene text : 
A person sees a snake to the right.

A person hears a loud crazy noise on their right.
A person sees a child running across their path.
A person notices a dog running towards them .

Figure 11. (d) demonstrates the results when the prompt does not
specify the number of scene text to be generated. We observed that
the absence of a limit on the number of scene texts generated for
each action text can result in some scene texts being misaligned
with the corresponding motion in the generated results. Further-
more, when the number of scene text sentences exceeds four, the
generated results often include undesirable outputs.

sisting of four parts: the original description (in lower-
case), the processed sentence, the start time (in seconds),
and the end time (in seconds), all separated by “#”. For
the processed sentence, we use Spacy for tokenization and
POS tagging. Some examples of our HUMANML3D++ are
shown in Figure 14.

(e) Prompt without examples

<miss examples>
The causal relationship between action sentence and scene sentence is very 
close.
I am now giving you some action sentences, hoping that you can complete 

some scene sentences, which should be the antecedents of the corresponding 
action sentence actions.
The action sentence I am giving you now is <>,I hope you can generate two 
sentences for each action sentence.

Action text : 
A person jumps sideways to the left.

Scene text : 
The ground beneath him is covered in soft grass, providing a perfect 

landing for his next move.
A group of friends nearby are playing a game, cheering as he 

prepares for his jump. 

Figure 12. (e) illustrates the results when the prompt does not
include action text and corresponding scene text examples. We
found that without specific contextual example guidance, it is chal-
lenging to generate scene text that aligns with the action text based
solely on linguistic relationship descriptions.

Figure 13. The results of user evaluation of data validation. The
majority of scene texts are perceived by users as being well-
aligned with the corresponding motions.



Figure 14. Dataset examples of HUMANML3D++.



10. More Implementation Details
10.1. More Implementation Details
The codebook is sized at 512 × 512, with a downsampling
rate l of 4. Training is conducted in two phases: the first
200K iterations use a learning rate of 2×10−4, followed by
100K iterations at 1 × 10−5. The VQ loss Lvq and recon-
struction loss Lre are weighted with β = 1 and α = 0.5, re-
spectively. Following the approach of Guo et al., the maxi-
mum motion length is set to 196 for both HUMANML3D++
and HUMANML3D [9] in ACT model.

10.2. Prompts in inference
We employ the following prompt to infer motions from
Scene Text in the Scene Text to Motion task.

Description
⟨Task
Introduction⟩

I will provide you with a Scene Text, which de-
scribes a scene or an event. Your task is to gen-
erate the corresponding Action Text.

⟨Relationship
Explanation⟩

The causal relationship between the two sen-
tences should be strong, where the Scene Text
serves as the antecedent of the corresponding
Action Text.

⟨Example⟩
• Scene Text: A man sees a coin on the ground.
• Corresponding Action Text: The man walks

forward and bends down to pick something
up.

⟨Task
Requirements⟩

Your task is to comprehensively consider fac-
tors such as the character and location to output
all possible reasonable results. Instead of out-
putting an Action Text, extract the Action In-
struction from it.

⟨Output
Format⟩ • (1) Only output Action Instructions without

any additional reasoning process.
• (2) Each possible result should be on a sep-

arate line, following the format like this:
(walk forward, bend down).

11. Experiment
11.1. Details of Action Text to Motion Metrics
We provide the commonly used metric calculation metrics
for the Action Texts to Motion domain. Specifically, FID
evaluates the distribution distance between generated mo-
tion and ground truth, R-Precision and MM-Dist measure
the consistency between Action Texts and generated mo-
tion, Diversity assesses the diversity of the entire set of gen-
erated motions, and MModality examines the diversity of
motions generated from the same action text. Detailed as
follows:
• R-Precision: Given one motion sequence and 32 text de-

scriptions (1 ground-truth and 31 randomly selected mis-

matched descriptions), we rank the Euclidean distances
between the motion and text embeddings. Top-1, Top-
2 and Top-3 accuracy of motion-to-text retrieval are re-
ported.

• Frechet Inception Distance (FID): We calculate the dis-
tribution distance between the generated and real motion
using FID on the extracted motion features.

• Multimodal Distance (MM-Dist): The average Eu-
clidean distances between each text feature and the gen-
erated motion feature from this text.

• Diversity: From a set of motions, we randomly sample
300 pairs of motion. We extract motion features and com-
pute the average Euclidean distances of the pairs to mea-
sure motion diversity in the set.

• Multimodality (MModality): For one text description,
we generate 20 motion sequences forming ten pairs of
motion. We extract motion features and compute the av-
erage Euclidean distances of the pairs. We finally report
the average over all the text descriptions.

11.2. Analysis on our new Metrics

As shown in Figure 15, Arbitrary Text to Motion is more
challenging and flexible compared to Action Text to Motion
(Action Label to Motion). Action Text (Label) to Motion
relies on explicit action labels or specific action-descriptive
texts and is deterministic in nature, focusing on generating
a single action pattern from a given action text. In con-
trast, our task expands to more general scene text inputs,
which may not contain explicit action labels. This is a
multi-solution task, where multiple plausible motion pat-
terns can be generated from a single scene text. Due to this
fundamental distinction, previous metrics that required gen-
erated results to strictly match ground truth are incompati-
ble with our task. Our new metrics allow the evaluation of
multiple generated results rather than focusing solely on a
“single correct” answer. They are well-suited to the charac-
teristics of multi-solution tasks and address the limitations
of the original evaluation framework.

Figure 16 illustrates the impact of different numbers N
of generated results on Hit Accuracy. As N increases, the
model is able to generate a greater variety of potential mo-
tions, which are more likely to include results similar to the
motion in the dataset, naturally increasing the probability of
hitting. The upward trend further demonstrates that the met-
ric effectively reflects the model’s ability to capture multiple
plausible solutions.

Evaluation Consistency. In the supplementary materials,
we provide additional visualization results and user studies
to further validate the consistency between our metric evalu-
ations and subjective assessments. For example, the evalua-
tion results indicate that TAAT outperforms T2M-GPT [52],
which is consistent with the visualization results and user
study findings. Additionally, the evaluation results show



A person is on the road but she gets 
lost.

She is performing a flying kick
with her right leg.

(a)  Other tasks

(b)  Ours

one-to-one

one-to-many

Figure 15. Our task is fundamentally different from previous tasks.
We are a multi-solution task, and even if the generated results are
inconsistent with the GT in the dataset, as long as they match the
scene text, they are reasonable.

Figure 16. The impact of different numbers of generated results
on Hit Accuracy.

that the performance ranking of the models is TAAT, T2M-
GPT [52], MDM [43], and MLD [3], which aligns with the
visualization results.

11.3. User study results

Figure 17 presents the results of our user study. We visually
assessed each method’s performance on 100 Scene Texts
and 100 Action Texts, with independent evaluations pro-
vided by 30 participants across 5 groups. Participants rated
the motion results based on their appropriateness and con-
sistency with the provided textual information, rating them
as suitable, acceptable, or unsuitable. The results reveal that
our model’s visual effects are superior to those of alterna-
tive methods, consistently generating realistic motions that
align well with human perceptual cognition.

11.4. Generate multiple motion results under Scene
Text

Our model effectively understands Scene Text and can gen-
erate multiple reasonable results for the same Scene Text.
Figure 18 illustrates multiple motion results generated un-
der the same Scene Text condition.

Figure 17. The user study of our model and T2M-GPT [52] on
Action Texts and Scene Texts. Our model generates motions that
are both realistic and aligned with human cognition.

11.5. Action Texts Results

In experiments conducted on Action Texts (in figure 19 and
figure 20), our model demonstrates the capability to sequen-
tially generate all actions as stipulated by the text. In con-
trast, alternative models fail to generate all actions and ex-
hibit inaccuracies in the sequencing of actions. The Action
Texts: “A person jumps first, then walks forward, then sits
down, and finally starts running.” contains four actions (in
figure 19). MDM [43] only performs walk and run actions,
while MLD [3] executes run, sit, and walk, however, the
order of actions is disordered. MotionDiffuse [53] com-
pletes the walk and jump actions but omits two actions, and
the sequence is disordered. T2M-GPT [52] only generates
walk and jump actions, with the sequence being disordered.
Only our approach successfully performs all four actions in
sequence.

The Action Texts “A person bends down first, then
walks, and finally jumps up.” contains three actions (in fig-
ure 20). MDM [43] generates actions that all involve jump-
ing forward, which do not meet our requirements. MLD [3]
produces bend-down and walk actions, but the sequence is
disordered. MotionDiffuse [54] completes the walk action
but omits two actions, and the sequence is disordered. T2M-
GPT [52] only generates the jump action. Only our ap-
proach successfully performs all three actions in sequence.

11.6. Scene Texts Results

In experiments conducted on Scene Texts (in figure 21
and figure 22), our model demonstrates strong capability
in comprehending the textual context and generating corre-
sponding actions, whereas alternative models display poor
performance in this regard. In the Scene Text “The cleaner
saw someone throwing garbage in the park” (in figure 21)
, when faced with the textual description, MDM [43], Mo-
tionDiffuse [53], and T2M-GPT [52] all generate the action
“throw”as described in the text, while MLD [3] generates
the action of looking around in place. Our model demon-



Figure 18. Our TAAT is capable of generating multiple reasonable motions from a single scene text. In addition to that, we have provided
additional video visualization results.

strates a comprehensive understanding of the text, gener-
ating the appropriate response action for a cleaner in this
scenario - running forward, bending over, and cleaning up
the garbage.

In the Scene Text “A person on the road with a motor-
cycle approaching in the distance.” (in figure 22) , when
presented with the textual description, MLD [3] primarily
consist of repetitive hand movements near the face, while
the posture of other parts of the body lacks a credible re-
sponse to danger. MDM [43] depicts squatting movements,
which do not correspond to the scenario of an approach-
ing vehicle. T2M-GPT [52] consist of repetitive forward

arm extensions, appearing mechanical. Each model’s re-
sponse actions are unreasonable for the given Scene Texts.
Our model(TAAT) demonstrates dynamic body coordina-
tion during running, including arm swings and leg propul-
sion, which align with the natural logic of human loco-
motion. It exhibits behavior consistent with “escaping” or
“avoiding” with the natural arm movements and forward-
leaning posture further enhancing the impression of “rapid
movement,” reflecting a reasonable response to perceived
danger.



11.7. Hyper-parameters evaluation of Think Model
For the two key hyperparameters of LoRA, r and α, a
smaller r indicates fewer parameters, while α controls the
scaling factor of the output from LoRA’s fully connected
layer. We adopt the same parameter setting as [55], ensur-
ing a scaling factor of α/r = 2 and setting r = 8. This
configuration aligns with the commonly used parameters
in [55], and has been shown to be effective in subsequent
small-scale tasks related to [55], while also reducing re-
source consumption.

We further examined the impact of batch size on model
performance in Table 8. The results indicate that as the
batch size increases, Hit Accuracy gradually improves, FID
decreases, and Diversity exhibits slight fluctuations across
different batch sizes. Specifically, when the batch size is set
to 16, Hit Accuracy reaches 79.9%, FID decreases to 0.379,
and Diversity is 8.950, demonstrating superior performance
compared to other batch size settings.

Batch Size Hit Accuracy↑ FID↓ Diversity↑
4 70.8 0.498 8.867
8 73.5 0.437 9.106
16 79.9 0.379 8.950

Table 8. Assessment of Results under Different Batch Sizes.

11.8. Evaluation of Think Model prompt
We present the ablation results of different parts of the
prompt, where the Prompt Struct on the left is consistent
with Sec 10.2. Under the condition of a standardized output
format, the results are generally acceptable in most cases.
However, in a few instances, unreasonable action instruc-
tions are observed (w/o Example, that is, Prompt Struct
2), or incomplete outputs are generated (w/o Task Require-
ments, that is, Prompt Struct 4). Moreover, when the out-
put format is not standardized, a significant amount of in-
valid information is produced (w/o Output Format, that is,
Prompt Struct 3). Overall, the prompt structure that effec-
tively mitigates these issues (Prompt Struct 1) demonstrates
better performance.

Prompt Struct 1: Example Output:
Task Introduction (upstairs to meet the friend)
Relationship Explanation (downstairs to meet the

friend)
Example (jump, wave hands)
Task Requirements (raise head, wave)
Output Format(1) (turn, wave arms)
Output Format(2)
Prompt Struct 2 : Example Output:
Task Introduction (Smile)
Relationship Explanation (Wave, Extend hand)
Task Requirements (met his friend)
Output Format(1)
Output Format(2)
Prompt Struct 3 (w/o : Example Output:
Task Introduction The output is:
Relationship Explanation (upstairs to meet the friend)
Example (turn, wave arms)
Task Requirements These actions usually vary

based on personal habits and
their relationship.

Output Format(2)
Prompt Struct 4: Example Output:
Task Introduction (raise head, wave)
Relationship Explanation (upstairs to meet the friend)
Example (turn, wave arms)
Output Format(1)
Output Format(2)
Prompt Struct 5: Example Output:
Task Introduction (raise head, wave)
Example (turn, wave arms)
Task Requirements walk
Output Format(1) (upstairs)
Output Format(2)



(a) MLD [3] does not strictly follow the action sequence described in the text. While the character performs a walking action after jumping, it does not sit
down as instructed, but instead transitions directly into running. The sitting action is entirely missing. The character’s running motion appears somewhat rigid,
lacking the expected fluidity and sense of speed.

(b) MDM [43] does not fully follow the action sequence described in the text. After jumping, the character does not perform the walking action, and the sitting
motion in the subsequent steps is unclear, followed by a direct transition into running.

(c) MotionDiffuse [53] does not fully follow the action sequence described in the text. While the character performs the walking action after jumping, it skips
the subsequent sitting action entirely, and the running motion also lacks realism.

(d) T2M-GPT [52] does perform the walking action after jumping, but it does not accurately complete the sitting action.

(e) Our TAAT generates actions that accurately follow the sequence described in the text. The character first performs a jumping action, then walks forward,
sits down, and finally starts running. Each action aligns with the textual requirements, demonstrating a high level of correspondence.

Figure 19. Comparison of motions generated by different methods for action text “A person jumps first, then walks forward, then sits down,
and finally starts running.”



(a) MLD [3] fails to execute the jumping action correctly, and the sequence of bend down and walk actions is incorrectly ordered.

(b) MDM [43] does not accurately follow the described sequence of actions. The character begins to jump immediately after bending down, rather than
performing the walking action before jumping.

(c) MotionDiffuse [53] does not fully adhere to the action sequence described in the text. While the character does perform the bending and walking actions,
it fails to complete the jumping action. Additionally, the bending motion appears somewhat rigid.

(d) T2M-GPT [52] does not strictly follow the action sequence described in the text, transitioning directly from standing to jumping, and then into walking
without performing the bending action.

(e) Our TAAT accurately executes the actions in the sequence described by the text. The character first bends down, then begins to walk and finally jumps.
The transitions between each action are natural.

Figure 20. Comparison of different methods for executing the action text “A person bends down first, then walks, and finally jumps up.”



(a) The actions generated by MLD [3] appear to be simple standing and walking motions, lacking overall coherence, and displaying disjointed movements,
such as bending, turning, and walking.

(b) The actions generated by MDM [43] resemble throwing something away, directly reflecting the text content, but they lack an appropriate response to the
scenario, resulting in a low alignment with the Scene Texts.

(c) The actions generated by MotionDiffuse [53] appear very bland, primarily consisting of standing and slight hand movements,
resulting in a low alignment with the Scene Texts.

(d) The actions generated by T2M-GPT [52] primarily consist of stepping forward and throwing, which may not be entirely realistic as reactive motions.

(e) Our method generates actions that depict the process of standing, observing, and gradually bending down to pick up the garbage, aligning well with the
scenario described in the Scene Texts.

Figure 21. Comparison of different methods for generating actions based on Scene Texts “The cleaner saw someone throwing garbage in
the park.”



(a) The actions generated by MLD [3] primarily consist of repetitive hand movements near the face, while the posture of other parts of the
body lacks a credible response to danger. This does not fully align with the context implied by the scene text.

(b) The actions generated by MDM [43] primarily depict squatting movements, which do not correspond to the scenario of an approaching
vehicle.

(c) The actions generated by T2M-GPT [52] consist of repetitive forward arm extensions, appearing mechanical and lacking an appropriate
response to the context implied by the scene text.

(d) Our TAAT demonstrates dynamic coordination of the body during running, including arm swings and leg propulsion, aligning with the
natural logic of human locomotion. It exhibits behavior consistent with “escaping” or “avoiding,” with the natural arm movements and
forward-leaning posture further enhancing the impression of “rapid movement,” reflecting a reasonable response to perceived danger.

Figure 22. Comparison of motions generated by different methods in response to Scene text “a person on the road with a motorcycle
approaching in the distance.”



12. Network Architecture
12.1. Architecture of VQ-VAE
Figure 23 illustrates the architecture of our motion VQ-
VAE [44]. The left side illustrates the overall structure of
the VQ-VAE, which comprises an encoder (E), a quantizer,
and a decoder (D). The quantizer employs a codebook to
map the input data to discrete vector representations. The
right side provides a more detailed view of the encoder and
decoder structures. The encoder consists of multiple 1D
convolutional layers (Conv1D) and residual blocks (Res-
Block), processed initially through a ReLU activation func-
tion, followed by downsampling in certain layers using con-
volution operations with a stride of 2. The decoder mirrors
the encoder’s structure but with operations in reverse order.

Figure 23. Architecture of our motion VQ-VAE.


