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Method KITTI-15 Midd-T (H) ETH3D
EPE  >3px | EPE  >2px | EPE  >Ipx
C 103 477 | 090 495 | 025 2.9

P
1-C)o Ly 1.03 476 | 085 481 025  2.08
(1-C)OLnp | 102 453 | 079 445 | 023 2.13

Table 9. Analysis of ZeroStereo loss (trained with RAFT-
Stereo [25]). We discuss the loss combinations based on L.

6. Details of Image Synthesis

Image Resolution. The input resolution of Depth Anything
V2 [63] and Stable Diffusion V2 Inpainting [39] is con-
strained, which may lead to object deformation when resiz-
ing images. To address this, we apply padding operations
to adjust image dimensions while preserving their original
aspect ratio. For example, when using Depth Anything V2,
we pad images to ensure their height and width are divisible
by 14. Additionally, high-resolution images, particularly
those from the Mapillary Vistas [34], may exceed available
GPU memory during inference. To mitigate this issue, we
first downscale images proportionally to half or quarter of
their original resolution, perform inference, and then up-
scale the outputs to restore the original dimensions.

Forward Warping. We utilize the source code of MfS-
Stereo [54] to implement forward warping, including non-
occlusion computation and depth sharpening. However,
when applying a diffusion model for inpainting, we identify
several challenges. First, despite advancements in monoc-
ular depth estimation, depth edges do not always align pre-
cisely with object boundaries. As a result, after forward
warping, the edges of foreground objects may remain in
their original positions. Second, the proximity between
the inpainting mask and the warped foreground objects can
mislead the diffusion model during inference. To mitigate
these issues, we employ a simple yet effective approach:
using the dilate function in OpenCV to inflate the pseudo-
disparity map. This operation ensures that foreground ob-
jects and nearby background pixels move together during
forward warping. Consequently, during inpainting, back-
ground pixels act as a buffer between the mask and the fore-
ground, reducing misleading information. However, despite
this refinement, the pre-trained diffusion model still pro-
duces ghosting artifacts and noise in many cases (Fig. 5).
These artifacts can only be effectively addressed by fine-
tuning the diffusion model.

7. Loss Analysis

In Sec. 3.5, we introduce the non-occlusion photometric
loss L, and the weighted final loss £z.,,. However, their

Method AbsErr | | SSIM 1T | L, ]
StereoDiffusion [51] 0.082 0.269 | 0.323
Ours 0.025 0.850 | 0.068

Table 10. Reconstruction loss. We warp the synthesized right im-
age with the pseudo disparity and compare it with the left image.

specific impact on stereo training has not been explicitly an-
alyzed. As shown in Tab. 9, the methods listed from top
to bottom correspond to: (1) applying the ordinary photo-
metric loss £y, (2) using £, with the weight 1 — C, and (3)
employing £,,,, with the weight 1 — C.

Among these, £, alone yields the worst performance
across all datasets due to the absence of balanced weight-
ing and its inability to handle ghost artifacts and inpainting
pixels. Introducing the weight 1 — C mitigates these is-
sues, leading to improved performance. The best results
are achieved when masks are further applied to filter out
ghost artifacts and inpainting pixels, highlighting the effec-
tiveness of our proposed approach.

8. Discussion on Synthesis Methods

In this section, we discuss two synthesis methods: StereoD-
iffusion [51] and AdaMPI [14].

StereoDiffusion [51] is a training-free method that uti-
lizes a pre-trained latent diffusion model to generate stereo
pairs from a single image. It applies null-text inversion [32]
for image editing, first reversing the diffusion process to ob-
tain a latent representation of the input image and then ap-
plying forward diffusion to synthesize the right view. How-
ever, this approach has notable limitations. First, inference
is computationally expensive. As shown in Tab. 4, synthe-
sizing a 512 x 512 image takes approximately 30 seconds.
Second, the null-text inversion process can unintentionally
modify the left image, introducing content inconsistencies.
As illustrated in Fig. 9, the original image lacks stones, yet
both the generated left and right views erroneously include
them. Similarly, fine details such as text often become dis-
torted. Quantitative reconstruction loss measurements (Tab.
10) confirm these issues, showing significantly higher errors
compared to our method. Moreover, using StereoDiffusion-
generated stereo pairs for training stereo matching networks
led to poor performance and convergence difficulties.

AdaMPI [14] generates multiplane images [69] (MPI)
from a single input image from a single input image for
novel view synthesis. However, as shown in Fig. 10, vary-
ing the camera motion ratios often introduces artifacts, par-
ticularly in occluded regions, where ghosting and trailing
effects are prevalent. This suggests that the MPI approach



Cloudy Foggy Rainy Sunny
Method F H| F H | F H | F H
NS-RAFT-Stereo 881 295 | 18.18 341 | 29.19 847 | 742 2.88
Zero-RAFT-Stereo | 6.44 2.69 | 8.66 1.70 | 30.10 11.71 | 6.46 3.15

Table 11. Zero-shot generalization performance on DrivingStereo under different weather. We utilize >3px All in comparisons.

Left Left by StereoDiffusion

Disparity

Right by StereoDiffusion

Right by Ours

Figure 9. Visualization of StereoDiffusion [51].

struggles to reconstruct the scene’s semantic structure ac-
curately. As a result, MPI-based stereo generation is less
suitable for training stereo matching models, as these ar-
tifacts compromise the quality and consistency needed for
effective learning.

In summary, while StereoDiffusion [51] and
AdaMPI [14] introduce innovative approaches for syn-
thesizing stereo images from single inputs, both have
significant limitations. StereoDiffusion suffers from high
computational costs and content distortions, while AdaMPI
struggles with semantic inconsistencies in occluded re-
gions. These challenges highlight the need for more
robust and accurate synthesis methods for stereo matching
applications.

9. Additional Comparisons with NeRF-Stereo

In this section, we present additional comparisons with
NeRF-Stereo [47], detailed Midd-T benchmark results, vi-

sualizations on KITTI and ETH3D, and zero-shot general-
ization performance on DrivingStereo [61].

For Midd-T, we report the performance of each sam-
ple in Tab. 12.  Compared to NS-RAFT-Stereo [47],
our Zero-RAFT-Stereo achieves improvements in nearly all
cases. Notably, for samples where NS-RAFT-Stereo per-
forms poorly, our method improves accuracy by almost
50%.

For KITTI and ETH3D, we provide visual compar-
isons between NS-RAFT-Stereo and Zero-RAFT-Stereo.
As shown in Fig. 11, Fig. 12, Zero-RAFT-Stereo gener-
ates smoother and more accurate disparity maps with fewer
artifacts and reduced noise. Notably, in the second row of
Fig. 12, our model effectively removes the large dispar-
ity artifacts present in NS-RAFT-Stereo, particularly in the
central dark region, demonstrating its superior handling of
challenging textures and illumination variations.

Additionally, we evaluate both models on the Driv-
ingStereo dataset under different weather conditions. As



Method Adi. ArtL  Jad. Mot. MotE Pia. PiaL  Pip. Plr. Plt. PItP Rec. She. Ted. Vin.
NS-RAFT-Stereo 1.51 414 2490 3.62 404  9.04 2581 5.89 1408 613 554 494 3959 496 2635
Zero-RAFT-Stereo | 1.39 491 1427 3.26 368 569 1373 522 953 721 550 420 2397 4.77 18.01

Table 12. Details of Midd-T. We utilize >2px Noc regions in Midd-T (F)
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Figure 10. Visualization of AdaMPI [14].

shown in Tab. 11, our Zero-RAFT-Stereo outperforms
NS-RAFT-Stereo across all weather conditions except rainy
weather, where both models exhibit poor performance, in-
dicating a need for further optimization in such scenarios.
Notably, Zero-RAFT-Stereo demonstrates significant im-
provements under foggy conditions, reducing errors from
18.18% to 8.66% at full resolution and from 3.41% to
1.70% at half resolution. Since foggy scenes typically have
low contrast and poor visibility, these results suggest that
Zero-RAFT-Stereo is more robust in such challenging con-
ditions. As illustrated in Fig. 13, under extreme weather
conditions, NS-RAFT-Stereo struggles to predict large tex-
tureless regions, while Zero-RAFT-Stereo successfully re-
constructs complete ground surfaces and walls. Moreover,
Zero-RAFT-Stereo exhibits superior segmentation of thin,
tree-like objects and blurry background regions, highlight-
ing its ability to maintain fine details even in adverse condi-
tions.



3px 8.34%

> Q0 . 490
> 3px 1.26% b > 3px 0.95%

Léft Image NS-RAFT-Stereo Zero-RAFT-Stereo

> 1px 0.15%

Figure 11. Visualization of KITTI.
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Figure 12. Visualization of ETH3D.
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Figure 13. Visualization of DrivingStereo.



