
χ: Symmetry Understanding of 3D Shapes via Chirality Disentanglement

Supplementary Material

In the supplementary materials, we include information
about the data generation (Sec. A), architectural decisions
(Sec. B), additional results (Sec. C & Sec. D) and imple-
mentation details (Sec. E).

A. BeCoS Data Generation
When generating BeCoS [18] with default settings, each
shape is used multiple times to generate a wide variety of
shape matching pairs. This results in a train/validation/test
split of 20370/274/284 shapes. Since we use the frame-
work to propagate annotations to all shapes, effectively ig-
noring the pairings, we restrict BeCoS to use each shape
at most once, resulting in the train/validation/test split of
1980/284/274 shapes. To generate BeCoS-h and BeCoS-a,
we filter the resulting dataset for human and animal entries,
respectively. Note that we assign the centaur shapes from
TOSCA dataset [7] to BeCoS-a.

B. Architectural Design
In our method, each vertex gets assigned two scalar features
χv and χ̄v , derived from a non-linear projection g̃ of its
original and mirrored Diff3F features. Specifically, we ex-
tract a specific component from g̃(Fv) and normalise it by
the L2 Norm of the whole feature vector. The normalisation
ensures that χv reflects the relative magnitude of the chosen
component compared to the whole feature, while remaining
invariant to scaling. Compared to a fixed non-linearity such
as tanh [g̃(Fv)]0, which only uses the first component, the
normalisation incorporates additional information and pro-
motes more stable learning dynamics. To empirically con-
firm our choice, we provide an ablation by training both
architectures and evaluating them in the left-right disentan-
glement task. The results can be found in Table T.1.

C. Different shape representations.
Our Lvar loss requires mesh connectivity to regularize the
smoothness and boundary of our solution, effectively re-
stricting the applicability of our method to meshes. How-
ever, connectivity information for different kinds of shape
representations, like point clouds, can be approximated.
For example using mutual k-nearest neighbors among ver-
tices. To get a first impression of the applicability of our
method on point clouds, we train a network using SD +
Dino features generated from rendered point cloud images.
We replace the edges used in Lvar with a primitive mu-
tual k-nearest neighbor (k = 5) connectiviy approximation.
The models are evaluated in the left/right classification on

FAUST. We also include results for the point cloud set-
ting without Lvar. The table and figure below show that our
method with k-nn approximation performs robustly on most
vertices of the point cloud.

Input Point cloud Mesh
Losses w/o Lvar KNN- Lvar Full

Acc 67.08 92.87 94.76

Table T.2. The model trained on point clouds using approximate
k-NN connectivity information reaches a high accuracy, compared
to a model trained without connectiviy information.

w/o Lvar KNN-Lvar

Figure F.1. Qualitative results of models trained on point clouds
with and without approximated k-NN connectivity information.
Without the Lvar loss, the length of the boundary is not regular-
ized, resulting in an inaccurate left/right split. With the approxi-
mate Lvar loss, the model is able to correctly classify most of the
points.

The inaccurate assignment of the left foot shows that there
are remaining open challenges. Since our main focus is on
3D meshes, we leave this exploration for future work.

D. Additional shape matching results.
We provide additional results for the shape matching task on
the FAUST benchmark [6]. We compute vertex correspon-
dences using cosine similarity between the vertex features
of the source and target shape. When combined with Diff3F



Train BeCoS BeCoS-h BeCoS-a FAUST SMAL

Test BeCoS BeCoS-h BeCoS-a BeCoS-h BeCoS-a FAUST SCAPE SMAL TOSCA

tanh 75.46 92.51 83.45 73.71 75.87 91.84 94.93 71.04 68.46
Normalisation 91.84 94.09 84.19 90.36 91.10 94.76 95.51 96.59 94.09

Table T.1. Normalisation of the chirality feature χv with respect to the whole vector results in higher accuracy across all datasets but
FAUST, compared to using tanh.

features, our features achieve a 50.0% decrease in error for
the inter-subject and 42.2% for the intra-subject task, com-
pared to Diff3F features. Qualitative results are shown in
Fig. F.2.

Inter-Subject
Source Diff3F Diff3F + Ours

Intra-Subject
Source Diff3F Diff3F + Ours

Figure F.2. Our method effectively resolves left/right ambiguity
when matching the FAUST benchmark. Both in the inter- and
intra-subject case.

E. Implementation details.
We employ a lightweight two-layer MLP to implement
gΦ, with a hidden dimension equal to the input dimension
(D = 3968) and ReLU as the activation function. Experi-
mentally, we find that using normalization on the output fea-

ture works better than sigmoid or tanh functions. The model
is trained on a single NVIDIA A40 GPU using ADAM with
a learning rate of 10−3. We precalculate the input features
and run the training for 20000 iterations, taking around 3h.
All details can be found in the code on https://wei-
kang-wang.github.io/chirality/.

https://wei-kang-wang.github.io/chirality/
https://wei-kang-wang.github.io/chirality/

	BeCoS Data Generation
	Architectural Design
	Different shape representations.
	Additional shape matching results.
	Implementation details.

