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7. Introduction

This supplementary material provides comprehensive de-
tails regarding the implementation, ablation studies, and
qualitative analysis of our proposed MixANT model. The
document is structured as follows: Section 8 describes the
implementation details of our model architecture; Section 9
presents additional ablation studies to analyze the contribu-
tion of different components; Section 10 provides some ad-
ditional results on other anticipation tasks; and Section 11
offers further qualitative comparisons between MixANT
and existing approaches in the literature.

8. Implementation Details

The overall task for the long-term dense anticipation is
shown in Fig. 9. For the Breakfast and 50Salads datasets,
we extract I3D features from previous works [2] and [11],
while for Assembly101 we use TSM-features [21] provided
by [29]. The features are then concatenated with zero
padding to represent future feature frames. A Gaussian
noise vector is sampled and added to the input tensor, which
is then processed by the MixANT model to generate per-
frame labels. Importantly, each noise vector produces a sin-
gle sample, and multiple outputs are generated by repeating
the process with different noise vectors while maintaining
the same input sample.

The list of hyperparameters for reproducibility purposes
is provided in Tab. 2. We used a single A100 GPU (80 GB)
for training all of our MixANT models.

Figure 7. Impact of conditioning gating vector γ on present and
future.

Figure 8. Impact of λlb for the load balancing loss (Llb).

9. Additional Ablation Studies
9.1. Impact of Conditioning Gating Vector on

Present and Future
We conducted an ablation study examining how perfor-
mance is affected when the gating vector γ is conditioned
on either the observed part of the input alone or the com-
plete input containing both observed and future parts.

For our ablation, we condition the gating vector on the
observed part of the input F k−1

t,1:P and the complete input
F k−1
t,1:P+F as in Eq. (17). As shown in Fig. 7, conditioning γ

exclusively on observed frames yields superior performance
compared to conditioning on both observation and future
components. This finding is consistent with theoretical ex-
pectations, as the latter approach incorporates zero-padded
future values that provide no meaningful information for the
decision-making process of selecting appropriate A matri-
ces. Consequently, restricting the conditioning of the gating
vector to only the observation component—which contains
the complete contextual information relevant to the selec-
tion process—proves to be more effective while appropri-
ately disregarding uninformative future padding.

9.2. Impact of Contribution of Load Balancing Loss
We analyze the impact of incorporating a load-balancing
loss component into the overall training loss function. This
addition of load balancing loss is controlled by a coefficient
λlb that determines the relative contribution of the load bal-
ancing loss. To analyze its impact, we systematically varied



Figure 9. Overall task of stochastic long-term dense action anticipation with its inputs and outputs. For the Breakfast and 50Salads datasets,
we extract I3D features from previous works [2] and [11], while for Assembly101 we use TSM-features [21] provided by [29]. The features
are then concatenated with zero padding to represent future frames. A Gaussian noise vector is sampled and added to the input tensor,
which is then processed by the MixANT model to generate per-frame labels. Importantly, each noise vector produces a single sample, and
multiple outputs are generated by repeating the process with different noise vectors while maintaining the same input sample.

MixANT Training Recipe

Dataset Breakfast 50Salads Assembly101

Epochs 90 90 90
Num of MixANT Blocks 15 15 15
Optimizer AdamW AdamW AdamW
Optimizer momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
Learning rate 0.0005 0.001 0.0005
Diffusion Steps (Training) 1000 1000 1000
DDIM steps 50 10 50

Table 2. Hyperparameters for MixANT.

λlb from 0 to 0.25 in increments of 0.05 in Fig. 8.
When λlb = 0, effectively training without load bal-

ancing loss, the network performs marginally better than
the baseline Mamba network. However, the introduction
of load balancing loss substantially improves performance.
The optimal results are achieved at λlb = 0.15, beyond
which performance degrades as the optimization objective
becomes overly focused on load balancing at the expense of
overall performance metrics.

9.3. Impact of Number of Experts on Inference
Speed

We evaluate the mean time required for generating 25 sam-
ples using our model on the Breakfast dataset with α=0.3
and β=0.5, for different numbers of experts. The results
are presented in Fig. 10. We observe that there is a slight
increase in inference time when the first mixture is used (2
experts). After that increase, the number of experts poses
a minimal overhead. We do not include GTDA in the plot
because its inference speed is much higher (71.8 seconds).

9.4. Computational Complexity and Performance
Tab. 3 compares parameters, memory, and inference time of
various methods. We also compare our approach to alterna-

Figure 10. Mean inference time for generating 25 samples using
our model on the Breakfast dataset with α=0.3 and β=0.5 across
varying numbers of experts. Dashed horizontal lines represent in-
ference speed of other methods.

tives to obtain input-dependent A matrices (large MLP and
query-key). MixANT is much more efficient than a large
MLP (> 80x faster) and query-key (> 14x faster), and it



Method Mamba A(x) Param. (M) Mem. (GB) Inf. Time (s) Top-1 MoC

GTDA 3.9 19.2 71.8 48.9
Transf. (15) 1.2 11.3 15.6 48.8
Transf. (18) 1.4 13.2 18.2 50.3
MANTA ✓ 1.4 10.2 1.1 52.7
Large MLP ✓ ✓ 8.0 38.7 137.4 47.4
Query-Key ✓ ✓ 2.3 22.7 24.4 52.3
MixANT (E = 5) ✓ ✓ 1.6 10.9 1.7 54.1

Table 3. Comparison of computational cost and Top-1 MoC for
different methods. The last three rows report results for three vari-
ants of making A input-dependent (A(x)). Top-1 MoC is averaged
over all α and β values on Breakfast. Inference time is per video
for α = 0.3, β = 0.5, and generating 25 samples.

K0 1 2 3 4 5 6

Params. (M) 1.70 1.67 1.64 1.62 1.60 1.58
Mem. (GB) 11.0 10.9 10.9 10.8 10.8 10.7
Inf. Time (sec) 1.8 1.8 1.7 1.7 1.6 1.6
Top-1 53.0 53.2 53.5 53.3 52.9 52.4

Table 4. Computational cost and mean inference time for gener-
ating 25 samples using our model on the Breakfast dataset with
α=0.3 and β=0.5 for varying numbers of initial static blocks K0.

achieves higher Top-1 MoC.
We also report the impact of the number of initial static

blocks K0 on parameters, memory, and inference time
in Tab. 4.

10. Additional Quantitative Results
Tab. 5 presents the action anticipation results on the EK-100
dataset, comparing our proposed MixMamba approach with
traditional attention and Mamba baselines. Our MixMamba
method demonstrates consistent improvements across all
evaluation metrics and scenarios. Specifically, MixMamba
achieves 29.7% verb accuracy and 17.1% action accuracy
on the overall split, representing improvements of 4.6% and
3.0% over the attention baseline, and 1.8% and 1.9% over
the Mamba baseline, respectively. The improvements are
particularly notable in the challenging tail scenarios, where
MixMamba reaches 22.7% verb accuracy and 14.1% action
accuracy, outperforming both baselines by substantial mar-
gins. These results demonstrate that our mixture approach
is effective on diverse anticipation scenarios.

11. Additional Qualitative Results
We present some qualitative results for MixANT in compar-
ison to the baseline MANTA for different action videos on
the Breakfast dataset in Fig. 11 (Making Pancake), Fig. 12
(Making Sandwich), and Fig. 13 (Making Coffee). All the
qualitative results are for the setting α=0.2 and β=0.5, and
we show two samples for each approach. The results show
that our proposed approach is consistently better across all
three videos, with greater alignment with the ground truth.



Overall Unseen Tail

Method Block Verb Noun Act Verb Noun Act Verb Noun Act

Testra [40] short Attn [5] 25.1 30.8 14.1 24.3 24.5 10.7 17.4 23.0 10.9
Testra [40] short Mamba [5] 27.9 34.1 15.2 28.1 24.2 12.0 20.5 27.8 12.3

Testra [40] short MixMamba 29.7 35.6 17.1 30.4 24.8 13.5 22.7 30.2 14.1

Table 5. Results of action anticipation on EK-100 [6]. Accuracy measured by class-mean recall@5(%) following the standard protocol.
“short” denotes using short-term memory.

Figure 11. Qualitative figure for anticipation result on the Breakfast dataset for the video P42 making pancake.

Figure 12. Qualitative figure for anticipation result on the Breakfast dataset for the video P47 making a sandwich.

Figure 13. Qualitative figure for anticipation result on the Breakfast dataset for the video P53 making coffee.
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