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1. Experiments with Additional Backbone
In Sect. 4, we evaluated the efficacy of the proposed GS-
DTTA on the ModelNet40-C [1] and ScanObjectNN-C [2]
benchmarks using DGCNN [3], CurveNet [4], and Point-
NeXt [5] as the point cloud classification backbone fθ
across all comparable methods. To further assess the ro-
bustness and adaptability of GSDTTA across diverse archi-
tectures, we extend our experiments to RSCNN [6], with
results shown in Table 1.

As illustrated in Table 1, GSDTTA achieves the high-
est mean accuracy across all methods on both datasets with
RSCNN [6]. Specifically, GSDTTA attains a mean accu-
racy of 78.03% on ModelNet40-C, surpassing the second-
best TTA method SHOT [7] by 0.48%. For the experiments
on ScanObjectNN-C, which represents real-world scenar-
ios, GSDTTA maintains its strong performance. Our GS-
DTTA achieves a mean accuracy of 58.44%, outperforming
the previous state-of-the-art 3DTTA methods Cloudfixer [8]
by 1.18%. The consistent improvements across datasets and
backbone networks demonstrate GSDTTA could generalize
well across different architectures and corruption types.

2. Comparble Methods in Experiments
In Sect. 4, we evaluate GSDTTA against various TTA meth-
ods on the ModelNet40-C and ScanObjectNN-C datasets.
The comparison includes 2D TTA methods such as BN [9],
PL [10], DUA [11], TENT [12], and SHOT [7], as well
as 3D-specific approaches like BFTT3D [13] and Cloud-
fixer [8]. Below, we provide a detailed overview of these
methods along with their experimental configurations and
hyperparameters.

BN. Batch Normalization (BN) [9] enhances model ro-
bustness by replacing the activation statistics of BatchNorm
layers with estimated statistics (i.e., µ and σ) derived from
the incoming batch of testing point clouds. This approach
requires no additional test-time hyperparameters. The re-
sults reported are obtained using the publicly available
implementation provided at https://github.com/

jiachens/ModelNet40-C.

PL. Pseudo-Labeling (PL) [10] assigns pseudo-labels to
unlabeled data by selecting the model’s highest-confidence
predictions and updates the model at test time using cross-
entropy loss. Two essential hyperparameters for this
method, the learning rate and the number of iteration steps,
are configured as 0.01 and 1, respectively. We get the results
utilizing the official code repository available at https:
//github.com/shimazing/CloudFixer.

DUA. Dynamic Unsupervised Adaptation (DUA) [11] re-
calibrates BatchNorm layer statistics by directly utilizing
each incoming test batch, applying moving averages to up-
date these statistics without requiring backpropagation. For
this method, the number of iteration steps and decay factor,
which regulate the rate of the moving average update, are
set to 5 and 0.9, respectively. We reproduce the results us-
ing the implementation accessible at https://github.
com/shimazing/CloudFixer.

TENT. Test-time Entropy Minimization (TENT) [12] op-
timizes the scale and shift parameters of BatchNorm layers
by minimizing entropy, while disregarding batch normal-
ization statistics from the source data. The critical test-time
hyperparameters for this approach, the learning rate and the
number of iteration steps, are set to 0.001 and 10, respec-
tively. The official repository used to reproduce the results
is avalible at https://github.com/jiachens/
ModelNet40-C.

SHOT. Source HypOthesis Transfer (SHOT) [7] aligns
target domain representations with the source hypothesis by
leveraging information maximization and self-supervised
pseudo-labeling. To further enhance pseudo-label accuracy,
SHOT employs K-means clustering. The method relies on
three test-time hyperparameters: the learning rate, the num-
ber of iteration steps, and the pseudo-label loss weight,
which are set to 0.0001, 5, and 0.2, respectively. The
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Dataset Method uniform gaussian background impulse upsampling rbf rbf-inv den-dec dens-inc shear rot cut distort occlusion lidar Mean

ModelNet40-C [1]

Source-only 78.93 71.27 28.36 35.82 83.71 74.03 76.99 82.01 76.62 74.55 42.83 77.55 74.39 42.50 33.51 63.54
BN [9] 85.29 83.10 67.58 70.58 87.15 78.76 80.87 85.21 83.42 79.70 60.78 83.67 78.56 50.20 45.75 74.71
PL [10] 86.35 83.63 69.41 74.23 83.75 79.57 81.97 84.44 82.29 78.73 62.07 82.82 79.90 47.33 45.87 74.82

DUA [11] 85.86 83.31 69.73 72.45 86.71 79.05 81.65 85.17 83.79 79.50 62.31 84.20 78.77 50.85 47.24 75.37
TENT [12] 86.87 84.40 70.95 74.51 86.79 80.06 82.09 85.41 84.48 80.14 63.61 84.84 79.25 50.57 48.10 76.14
SHOT [7] 86.55 85.53 75.61 78.12 84.80 80.83 83.14 86.26 84.84 81.60 66.17 84.16 80.71 52.96 51.90 77.55

BFTT3D [13] 79.34 72.16 30.40 41.07 84.05 73.50 76.66 83.08 78.21 75.20 44.93 79.59 74.51 43.55 33.89 64.68
Cloudfixer [8] 89.16 89.45 77.19 88.68 90.22 80.07 81.21 78.04 73.90 75.08 66.07 78.77 76.34 38.92 36.81 74.66

GSDTTA (ours) 86.14 83.95 88.45 82.41 87.40 80.11 82.13 86.22 84.72 80.71 64.22 83.79 79.66 51.66 48.82 78.03

ScanObjectNN-C [2]

Source-only 43.20 33.91 32.87 34.42 49.39 66.09 67.47 70.91 65.06 67.81 55.59 64.89 68.85 11.02 13.43 49.66
BN [9] 53.36 46.47 38.04 44.23 58.18 68.50 68.50 71.77 71.43 69.19 60.58 69.02 68.85 11.53 12.05 54.11
PL [10] 56.45 51.81 34.77 45.96 55.59 65.75 66.44 71.08 69.71 68.16 60.41 65.92 66.61 12.22 10.84 53.45

DUA [11] 57.14 51.81 37.18 47.16 59.38 67.47 68.85 73.49 71.43 69.19 62.31 69.53 68.16 11.19 10.84 55.01
TENT [12] 56.28 52.66 37.01 47.85 58.69 66.44 68.33 72.63 70.40 69.02 62.31 68.33 67.30 11.02 11.70 54.66
SHOT [7] 57.83 54.91 36.83 52.32 56.80 65.92 65.92 70.57 69.02 67.30 59.04 66.27 66.09 12.05 9.81 54.05

BFTT3D [13] 45.31 39.41 33.33 41.15 53.30 66.15 68.92 68.23 60.76 65.62 55.73 61.46 69.62 12.85 13.54 50.36
Cloudfixer [8] 66.15 64.24 49.48 72.05 76.04 61.98 67.36 63.89 63.89 65.28 57.64 63.72 67.53 9.03 10.59 57.26

GSDTTA (ours) 56.63 53.53 64.54 65.06 61.10 66.61 69.54 74.35 71.77 70.05 61.79 70.22 68.67 11.70 11.02 58.44

Table 1. Classification accuracy (%) across various distributional shifts in the ScanObjectNN-C dataset[2] with DGCNN [3] as backbone
network [6]. Mean accuracy scores are reported with the highest values highlighted in bold and the second highest underlined.

GSDPS GSGMA EGSS uniform gaussian background impulse upsampling rbf rbf-inv den-dec dens-inc shear rot cut distort occlusion lidar Mean
✗ ✗ - 48.70 44.57 40.61 67.46 56.79 70.39 72.28 67.46 73.66 73.49 62.65 69.53 73.14 10.67 10.32 56.11
✗ ✓ ✓ 61.44 60.06 18.24 70.05 65.74 70.74 73.32 68.84 72.28 72.97 63.51 67.64 72.12 10.33 11.88 57.28
✓ ✗ ✓ 51.98 45.09 63.85 72.29 56.97 72.63 72.29 66.95 74.01 73.66 61.61 68.16 73.32 11.01 11.36 58.35
✓ ✓ ✗ 62.30 59.03 69.01 72.81 64.54 71.42 73.32 69.36 74.01 72.46 63.51 69.02 74.01 11.87 11.35 61.20
✓ ✓ ✓ 63.17 58.52 69.54 73.67 66.09 71.26 74.01 70.74 75.04 74.87 66.61 69.02 73.67 10.67 10.51 61.83

Table 2. Accuracy (in %) of variants of GSDTTA for point cloud classification on ScanObjectNN-C with different architectures.

experimental results are obtained from the code hosted at
https://github.com/shimazing/CloudFixer.

BFTT3D. The Backpropagation-Free Test-Time 3D
(BFTT3D) [13] employs a backpropagation-free adaptation
module to generate target-specific logits, which are then
fused with logits from the source model to produce the
final predictions. Four hyperparameters are utilized in
this method: k, α, and β, which are used to construct
the non-parametric network, and γ, a scaling factor for
calculating output logits. These parameters are set to
120, 1000, 100, and 205, respectively. The results are
reproduced using the authors’ publicly available code at
https://github.com/abie-e/BFTT3D.

Cloudfixer. Cloudfixer [8] is an input adaptation method
for 3D point clouds that employs a pre-trained diffusion
model to directly transform test instances into the source
domain. In addition to input adaptation, Cloudfixer also ad-
justs the model using data from each test batch. Several
test-time hyperparameters are involved in this method, in-
cluding the timestep schedule (tmin, tmax) and the number
of iterations S for the diffusion model; the nearest neighbor
parameter k, the input learning rate ηinput and regulariza-
tion scheduling λ(·) for input adaptation; and the number
of votes K and the model learning rate ηmodel for model
adaptation. These hyperparameters are set to 0.02, 0.12,
30, 5, 0.0001, 10, 3, and 0.00001, respectively. The re-
sults are derived by directly running their published code
https://github.com/shimazing/CloudFixer.

3. Per corruption results of ablation study.
In Sect. 4.4, we present the results of ablation studies to
evaluate the effectiveness of the components of GSDTTA.
Here, we provide a detailed breakdown of the performance
across individual corruptions to analyze the contribution of
each component. This analysis highlights how Graph Spec-
tral Driven Point Shift (GSDPS) module for input adapta-
tion, Graph Spectral Guided Model Adaptation (GSGMA)
module for model adaptation, and eigenmap-guided self-
training strategy (EGSS) improve robustness across various
corruption types.

Table 2 presents the performance analysis of GSDTTA
variants on ScanObjectNN-C across 15 corruption types.
The baseline variant, excluding all components, achieves
the lowest mean accuracy of 56.11%, with significant
drops under uniform noise (48.70%) and impulse cor-
ruption (67.46%). Introducing GSGMA alone raises the
mean accuracy by 1.17%, demonstrating moderate gains
through model adaptation, with notable improvements un-
der uniform noise (61.44%v.s.48.70%) and impulse cor-
ruption (70.05%v.s.67.46%). Adding GSDPS increases
the mean accuracy by 2.24%, underscoring the importance
of input adaptation in the graph spectral domain, particu-
larly under background noise (23.24%) and impulse cor-
ruption (4.83%). The full GSDTTA, combining all com-
ponents, achieves the highest mean accuracy of 61.83%,
excelling under upsampling (66.09%), background corrup-
tion (69.54%), and shear (74.87%). Replacing EGSS with a
deep-feature-guided self-training approach, where pseudo-
labels are generated solely from the global deep descriptor,
slightly decreases accuracy to 61.20%. These results con-
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firm the effectiveness of GSDTTA integrating GSDPS, GS-
GMA, and EGSS in addressing diverse distribution shifts.
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