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6. Experiment details

For our experiments, we have adopted all baselines and
configurations from the BackdoorBench [21]. Below, we
provide a detailed overview of the experimental setup.

6.1. Attack details

In this section, we outline the configurations of each attack
method utilized in our experiments and discussions:
• BadNets [4]: This pioneering work in backdoor learning

involves inserting a small, fixed-pattern patch into images
to manipulate certain pixels. Our implementation adheres
to the default settings outlined in BackdoorBench.

• Blended backdoor attack (Blended) [3]: Utilizing an alpha-
blending technique, this method integrates fixed patterns
into images. In our experiments, we employ an alpha
value of 0.2, which is the default in BackdoorBench. It is
worth noting that this relatively high alpha value introduces
noticeable changes to clean images, making the Blended
Attack particularly challenging for defense mechanisms.
The results for FT-SAM on the Blended Attack differ from
those reported in [25], where an alpha value of 0.1 was
used.

• Warping-based poisoned networks (WaNet) [12]: This at-
tack employs a warping function during training to distort
clean samples and create poisoned ones. We follow the
default settings specified in BackdoorBench.

• Low-frequency attack (LF) [23]: By filtering out high-
frequency artifacts from a Universal Adversarial Pertur-
bation (UAP), this method applies a smooth trigger to
images. Our implementation aligns with the default set-
tings in BackdoorBench.

• Input-aware dynamic backdoor attack (Input-aware)[11]:
This training-controllable attack learns a trigger generator
that produces sample-specific triggers during the model’s
training phase. We adhere to the default settings in Back-
doorBench.

• Sinusoidal signal backdoor attack (SIG) [1]: This clean-
label attack uses a sinusoidal signal as a trigger to subtly
alter images associated with the target label. Our experi-
ments follow the default settings in BackdoorBench.

• Sample-specific backdoor attack (SSBA) [6]: Employing
an auto-encoder, this method fuses a trigger into clean
samples to generate poisoned data. We use the default

settings from BackdoorBench.
To ensure a fair comparison, most of the attack check-

points were obtained from BackdoorBench Model Zoo. For
adaptive attacks, attacks with a poisoning ratio exceeding
10%, and attacks targeting ALL-to-ALL labels, we generated
the necessary checkpoints using the default configurations
provided in BackdoorBench, as these specific checkpoints
are not available on the official website.

6.2. Defense details
In this section, we outline the configurations of each defense
mechanism utilized in our experiments and discussions:
• FT (vanilla fine-tuning): This straightforward approach

involves refining the compromised model using a reserved
dataset. For consistency, we adhere to the vanilla configu-
ration outlined in BackdoorBench.

• ANP [22]: Based on the work of Wu and Wang [22], this
technique eliminates neurons that exhibit high sensitivity
to changes in weights. Within the framework of Back-
doorBench, ANP’s pruning threshold can be determined
either through grid search on the test data or by applying a
predefined constant value. To ensure an fair comparison
with other methods, we opt for a fixed threshold, setting it
to 0.4—this adjustment yields superior results compared
to the initially suggested threshold of 0.2. The remaining
parameters align with BackdoorBench’s default setup.

• FP [8]: As introduced by Liu et al. [8], this method se-
lectively removes neurons based on their activation levels
before proceeding with further refinement to maintain the
model’s accuracy on clean data. Our implementation fol-
lows the default guidelines provided by BackdoorBench.

• NC [19]: Wang et al. [19]’s method aims to identify po-
tential triggers by optimizing them; upon detection of a
backdoored model, it counteracts the backdoor through un-
learning these optimized triggers. If the model is deemed
clean, NC will not alter it. We use the default configura-
tions in BackdoorBench.

• NAD [7]: This strategy, proposed by Li et al. [7], employs
attention distillation to neutralize backdoors. We imple-
ment this method following the default settings specified
in BackdoorBench.

• i-BAU [24]: Zeng et al. [24]’s approach leverages adver-
sarial training with Universal Adversarial Perturbations
(UAP) and hyper-gradients to combat backdoors. Our ex-
perimental setup uses the default conditions established in

https://github.com/SCLBD/BackdoorBench
http://backdoorbench.com/model_zoo


BackdoorBench.

• FT-SAM [25]: Zhu et al. [25]’s method enhances the
vanilla fine-tuning process by incorporating sharpness-
aware minimization to bolster backdoor defenses. We
apply this technique under the default settings prescribed
by BackdoorBench.

• SAU [20]: Wei et al. [20]’s novel method utilizes Projected
Gradient Descent (PGD) to create shared adversarial ex-
amples, which are subsequently unlearned to mitigate the
impact of backdoors. Our experiments conform to the
default settings detailed in BackdoorBench.

• D3 (Ours): The proposed method mitigates backdoor by
steering the model parameters away from the initial back-
doored model. Specifically, we focus on the weights of
the linear layers, a common element across various model
architectures. For experiments in Section 4, we configure
the regularization parameter λ to 10 and the threshold ϵ to
0.1. The distance between the current and initial state of
the selected weights is measured using the Frobenius norm
of the difference, and we impose a constraint to maintain
the Frobenius norm of the weights consistent with their
initial values, ensuring ∥θs∥F = ∥θinit,s∥F .
Note: For the parameters λ and ϵ, a trade-off between
accuracy and defense performance is observed. In sim-
pler tasks, such as classification with a small dataset and
a large model, using a smaller λ and a larger ϵ can en-
hance defense performance. Conversely, for more com-
plex tasks, like classification with a complex dataset and a
small model, a larger λ and a smaller ϵ is preferred to im-
prove accuracy. For practical applications, we recommend
setting ϵ within the range of [0.1, 0.5], which corresponds
to a prediction confidence interval of approximately 60%
to 90%. For λ, we suggest values between 1 and 10 for
simple tasks (e.g., GTSRB and CIFAR10) with robust
models, and between 10 and 100 for complex tasks (e.g.,
ImageNet) with less powerful models. Further research
into parameter selection could yield even better results,
and this remains an area for future exploration.

7. Analysis and discussion

In this section, we provide more analysis and discussion of
the proposed method, including the algorithm details, its
effectiveness and more ablation studies.

7.1. D3 Algorithm

Optimization algorithm. Based on the aforementioned
analysis, here we provide the details of the proposed method,
summarized in the following algorithm 1.

Algorithm 1 Distance-Driven Detoxification

Input: Reserved dataset Dcl, initial model weights θinit,
max iteration number T , selected weights θs, distance
measure d, threshold ϵ, multiplier λ, and the projection
operator P .
for t = 0, ..., T − 1 do

for Each mini-batch in Dcl do
▷ Loss computation
Compute the weights distance

Ldis = d(θs,θinit,s).

Compute the classification loss Lcls.
Compute the overall batch loss

Lbatch = −Ldis + λ×max {0,Lcls − ϵ} .

▷ Weights update
Take gradient ∇Lbatch

∇θ and update θ using SGD [2].
Project the select weights θs = P(θs).

end for
end for
return θ

Training cost comparison. Compared to vanilla fine-
tuning, D3 incorporates the computation of the weight dis-
tance, which incurs only a minimal increase in computa-
tional cost. To underscore the efficiency of D3, we have
benchmarked its execution time against other baselines. The
experiments are performed with CIFAR-10, utilizing PreAct-
ResNet18. All tests were executed on a server with an RTX
3090 GPU and an AMD EPYC 7543 32-Core Processor,
ensuring a consistent number of training epochs across all
methods for a fair evaluation. As illustrated in Figure 1, D3
exhibits faster execution times compared to most other de-
fense strategies. This evidence reinforces the claim that D3
is not only effective but also highly efficient in combating
backdoor attacks.
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Figure 1. Comparative analysis of different methods across various
Datasets. The values are normalized with respect to the training
time of vanilla full-tuning.



7.2. More ablation study
Investigation of selected layers As outlined in Section 3,
the proposed method encounters an overfitting issue, which
compromises its generation capabilities and reduces its accu-
racy. To address this problem, it is essential to concentrate
on a selective subset of model weights. Consequently, we
explore the impact of various weight selections. Specifically,
we perform experiments using the CIFAR-10 dataset with a
PreAct-ResNet18 architecture under a 10% poisoning ratio.

Table 1. Selected layers in PreAct-ResNet18.

Index Type Shape

1 Conv2d 3x3x3x64
3 Conv2d 64x3x3x64
5 Conv2d 64x3x3x64
7 Conv2d 128x3x3x128
9 Conv2d 128x3x3x128

11 Conv2d 256x3x3x256
13 Conv2d 256x3x3x256
15 Conv2d 512x3x3x512
17 Conv2d 512x3x3x512
18 Linear 512x10

The PreAct-ResNet18 model consists of 18 layers, from
which we have chosen 10 distinct layers, as detailed in Ta-
ble 1, ranging from the initial to the final layer. We then
assess the effectiveness of our approach by conducting sep-
arate experiments for each selected layer. The results are
illustrated in Figure 2, demonstrating that our method can ef-
fectively counteract backdoor attacks regardless of the layer
chosen. Notably, the deeper layers (the last three) contribute
to maintaining a higher level of accuracy, likely because
these layers have developed more refined feature represen-
tations. Conversely, the middle layers tend to struggle with
achieving high ACC, possibly because they play a critical
role in extracting clean features, which is vital for sustaining
ACC.

In summary, selecting deeper layers is generally advis-
able. It is worth noting that our current analysis focuses
solely on layer-wise weight selection. Future research could
expand this investigation to include neuron-wise selection
and combinations of multiple layers.

Investigation of distance metrics An essential aspect of
the proposed method is the choice of distance metric. In
this study, we primarily utilize a norm-based distance met-
ric, defined as d(θs,θinit,s) = ∥θs − θinit,s∥, where ∥ · ∥
represents a specific norm. This formulation enables us to
design a corresponding projection operator to constrain the
norm of the selected weights such that ∥θs∥ = ∥θinit,s∥.

To investigate the influence of different norm metrics,
we conducted a series of experiments using the CIFAR-10
dataset with a PreAct-ResNet18 model architecture, under

a 10% poisoning rate. Three distinct norm metrics were
evaluated: the L1 norm, the Frobenius norm (equivalent to
the L2 norm for two-dimensional matrices in linear weights),
and the Nuclear norm. The performance of our method was
assessed through separate experiments for each norm, with
the results compiled in Table 2. The findings indicate that
our approach effectively mitigates backdoor attacks across
all tested norms. Note that as L1 norm usually results in
a significant larger value than other norms, it usually leads
to a lower ACC than other norms. So, we recommend the
Frobenius norm or the Nuclear norm.

Table 2. Results (%) on CIFAR-10 with PreAct-ResNet18 and
poisoning ratio 10.0% with different norms.

Attack → BadNets [4] Blended [3] WaNet [12]

Norm ↓ ACC ASR ACC ASR ACC ASR

L1 89.86 0.46 91.81 4.44 92.73 0.11
Frobenius/L2 90.77 0.74 92.29 0.22 93.31 0.04

Nuclear 90.46 0.67 92.04 0.86 93.32 0.03

Attack → SSBA [6] LF [23] Input-aware [11]

Norm ↓ ACC ASR ACC ASR ACC ASR

L1 91.18 1.59 91.65 2.10 92.43 0.11
Frobenius/L2 91.85 0.81 92.37 1.31 92.96 0.06

Nuclear 91.82 1.17 92.35 1.16 92.89 0.07

7.3. Connection and distinction to fine-tuning based
methods

In this section, we present a detailed comparison between
our method and some existing fine-tuning based method,
including those that are currently unpublished or in preprint
form. This comparative analysis aims to highlight both the
similarities and the unique contributions of our work.

Connection and distinction to FT-SAM [25] : The work
by Zhu et al. [25] posits that vanilla fine-tuning (FT) lacks
the capacity to escape from backdoor solutions, leading to
insufficient mitigation of backdoor effects (Section 3.2 in
[25]). This hypothesis aligns with our findings. However,
their validation is limited to demonstrating that the weight
differences are minimal and that the backdoor remains active
(high ASR).

In contrast, our approach offers a deeper and more rigor-
ous examination. We construct a continuous path between
the backdoor model and the fine-tuned model, analyzing
how the backdoor loss evolves along this path. This analysis
reveals that increasing the distance between the models can
effectively mitigate the backdoor effect. Furthermore, we in-
troduce a novel optimization problem designed to explicitly
move the model away from the backdoor solution, providing
a more robust and systematic approach to backdoor mitiga-
tion.
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Figure 2. Visualization of experiments with different choices of layers in PreAct-ResNet18, with CIFAR-10 dataset and poisoning ratio 10%.

Connection and distinction to FST [10] : Min et al. [10]
introduce a feature-shifting technique (FST) for backdoor
mitigation. They analyze the features used in the final classi-
fication layer and propose shifting these features to mitigate
backdoor effects. By approximating the features using the
weights of a linear classifier, they formulate a regularized
problem with the goal to decrease the feature similarity.
Despite some similarities in the formulation, our method
diverges from FST in several key aspects: 1) Perspective
and Motivation: Our method is grounded in the loss land-
scape perspective and addresses the inherent limitations of
vanilla fine-tuning. In contrast, FST focuses primarily on
feature manipulation. 2) Generality and Flexibility: Our
approach offers a more general framework, whereas FST
can be seen as a specific instance of our method. For exam-
ple, setting threshold ϵ to zero, selecting linear weight and
using the negative weight product as a distance metric in our
framework essentially reduces it to FST. However, as afore-
mentioned analysis, our method can be applied with various
selection of weights, distance metrics and thresholds ϵ. By
highlighting these distinctions, we underscore the broader
applicability and enhanced effectiveness of our method in
mitigating backdoor attacks.

Connection and distinction to Super-FT [17] : Sha et al.
[17] propose a method for backdoor mitigation by dynam-
ically adjusting the learning rate during fine-tuning. Their
approach involves using a high learning rate initially to ”for-
get” the backdoor and then a low learning rate to maintain

model utility. While this method is conceptually distinct
from ours, it can be interpreted within the framework of loss
landscape analysis. A high learning rate facilitates escaping
local minima, thus helping the model to move away from
the backdoor region, indirectly reducing the backdoor loss.

However, our method takes a more direct and explicit
approach by constructing an optimization problem that ex-
plicitly increases the distance from the backdoor solution.
This ensures a more controlled and predictable mitigation
of backdoor effects. It is worth noting that since [17] is still
a working paper and lacks an official implementation, we
have not conducted a direct comparison with their method.

Connection and distinction to NFT [5] : Karim et al. [5]
proposed Neural mask Fine-Tuning (NFT), a method that
mitigates backdoor attacks by fine-tuning neural masks in-
stead of directly modifying model weights. NFT leverages
data augmentation techniques like MixUp to relax the trigger
synthesis process, thereby reorganizing neuron activations
to counteract backdoor triggers. While NFT does not ex-
plicitly adjust weights through conventional fine-tuning, it
indirectly modifies the effective weights via mask optimiza-
tion. Specifically, by optimizing masks on augmented data,
NFT implicitly steers the masked weights away from the
backdoored initial configuration. This contrasts with our
approach, D3, which directly manipulates weights within
a constrained subspace to explicitly counteract backdoor-
induced shifts.



Summary of our unique contribution. Here, we would
like to emphasize our contributions from three key perspec-
tives: 1) Identify the Gap Between Ideal Backdoor Purifi-
cation and Vanilla Fine-Tuning. We identify a fundamental
discrepancy between the ideal objective of backdoor purifi-
cation and the vanilla fine-tuning loss, supported by our
empirical observations in Figure 2. 2) Explicit Solution to
Escape the Backdoor Region. While some prior works,
such as FT-SAM, FST, Super-FT and NFT can also move
the model away from initial weights, they rely on implicit
mechanisms such as SAM, Feature Shift, MixUp, Dynamic
Learning Rate or Neural Masking, to indirectly achieve this
objective. In contrast, by addressing the challenges in Sec-
tion 3.3, we offer explicit and principled method for escaping
the backdoor region. 3) Superior Performance in Challeng-
ing Scenarios. The explicit nature of our method enables
our method to provide more robust defense performance,
particularly against adaptive attacks designed to counter fine-
tuning-based defenses.

7.4. Grad-CAM Visualization
To gain deeper insights into the effectiveness of our pro-
posed method, we utilized Grad-CAM [16] to visualize the
attention mechanisms of both the backdoored and detoxified
models. For optimal visualization, we specifically focused
on the BadNets attack scenario, employing the CIFAR-10
dataset and a PreAct-ResNet18 architecture, with a 10%
poisoning rate. This is because the BadNets attack uses a
human-friendly trigger, making it ideal for visual analysis.

The results, illustrated in Figure 3, reveal that the back-
doored model exhibits a pronounced focus on the trigger
area when processing poisoned samples. In contrast, the
detoxified model redirects its attention towards the semantic
features of the images, effectively neutralizing the backdoor
influence. Furthermore, the detoxified model demonstrates
nearly identical attention patterns to the original, unpoisoned
model when handling clean samples, suggesting that it main-
tains a high level of accuracy for these inputs.

8. Additional experiments

8.1. Experiments on more datasets and models
In this section, we extend the initial findings presented in
Section 4 through a rigorous and comprehensive assess-
ment of our proposed method. This evaluation spans multi-
ple datasets and model architectures, thereby substantiating
the versatility and robustness of our approach. We specifi-
cally examine its effectiveness with the PreAct-ResNet18,
VGG19-BN, and ViT-B-16 models, employing the CIFAR-
10, GTSRB, and Tiny ImageNet datasets. Note that for the
more complex tasks involving Tiny ImageNet and ViT-B-
16, where the challenge lies in balancing model complexity
and task difficulty, we set different λ and ϵ, while reserving

10% of the training data. Recognizing the computational
demands of the ViT-B-16 architecture, we further adjusted
the learning rate to 0.001, ensuring that the optimization
process remains efficient and effective, thus enabling the
identification of more optimal solutions.

Here, we also provides the results of some ViT-
compatible baselines and summarized the results in Table 4,
showing the superior performance of D3.

Table 3. Results on Tiny ImageNet with ViT-B-16.

Attack → BadNets [4] Blended [3] WaNet [12]

Defense ↓ ACC ASR ACC ASR ACC ASR

No Defense 73.96 99.79 75.28 99.93 62.68 99.61
D3 (Ours) 71.64 0.29 73.13 4.48 60.92 0.98

Attack → Input-aware [11] LF [23] SSBA [6]

Defense ↓ ACC ASR ACC ASR ACC ASR

No Defense 63.86 99.9 59.72 3.81 76.37 99.27
D3 (Ours) 61.11 0.61 57.03 0.21 73.68 0.01

Table 4. Defense on Tiny-ImageNet+ViT.

Attack Defense FT FT-SAM SAU D3

BadNet ACC/ASR 72.54/5.89 73.31/0.89 68.85/0.00 71.64/0.29

Blended ACC/ASR 73.89/18.56 74.85/12.35 67.56/6.52 73.13/4.48

The results of these meticulous evaluations are encapsu-
lated in Tables 5, 6 and 3. These tables reveal a nuanced
trade-off: while our method may introduce a slight reduction
in accuracy on clean samples—particularly pronounced with
larger, more complex models—this is a necessary conces-
sion for achieving enhanced robustness against adversarial
attacks. This observation underscores the ongoing challenge
of securing large-scale models.

Moreover, our results unequivocally demonstrate that
the proposed method not only mitigates backdoor attacks
effectively across a wide range of datasets and models but
also achieves performance that is on par with, or surpasses,
current state-of-the-art defense mechanisms. Consequently,
these findings position our method as a highly promising and
viable solution for enhancing the security and reliability of
deep learning systems.

8.2. Baselines with various poisoning ratios.

We present part of results for the most competing baselines
with different poisoning ratios. The results are summarized
in Table 7, showing that the proposed method can consis-
tently outperform baselines for various poison ratios.
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the output of the detoxified model.

Table 5. Results on GTSRB with PreAct-ResNet18 and poisoning ratio 10.0%.

Defense → No Defense FT ANP [22] FP [8] NC [19]

Attack ↓ ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [4] 97.24 59.25 N/A 98.73 5.09 77.08 96.89 0.06 79.42 98.21 0.09 79.58 97.48 0.01 79.62
Blended [3] 98.58 99.99 N/A 98.57 100.0 50.0 98.75 99.82 50.09 98.38 100.0 49.9 97.76 8.03 95.57
WaNet [12] 97.74 94.25 N/A 98.54 0.29 96.98 98.00 0.00 97.12 97.62 88.07 53.03 98.25 0.00 97.12

LF [23] 97.93 99.57 N/A 98.01 79.98 59.8 97.80 81.38 59.03 97.59 99.7 49.83 97.97 1.34 99.11
Input-aware [11] 97.26 92.74 N/A 98.40 29.81 81.46 99.14 0.00 96.37 98.08 2.32 95.21 98.55 0.01 96.36

SSBA [6] 97.98 99.56 N/A 97.92 99.1 50.2 97.86 98.73 50.36 97.75 99.46 49.94 97.72 0.29 99.50
Average 97.79 90.89 N/A 98.36 52.38 69.25 98.07 46.66 72.06 97.94 64.94 62.92 97.95 1.61 94.55

Defense → NAD [7] i-BAU [24] FT-SAM [25] SAU [20] D3 (Ours)

Attack ↓ ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [4] 98.69 0.63 79.31 96.47 0.02 79.23 98.65 0.56 79.34 97.92 0.00 79.63 97.36 0.00 79.63
Blended [3] 98.61 100.0 50.0 92.35 86.35 53.71 98.28 68.74 65.48 98.15 0.37 99.59 97.24 0.54 99.06
WaNet [12] 98.61 0.56 96.84 96.72 0.0 96.62 98.67 0.01 97.12 98.38 0.00 97.12 97.62 0.00 97.07

LF [23] 98.14 51.83 73.87 95.78 16.15 90.64 97.67 0.64 99.34 94.35 0.65 97.67 96.41 0.00 99.03
Input-aware [11] 98.27 40.65 76.04 97.09 0.52 96.03 99.55 0.13 96.30 98.75 0.00 96.37 97.93 0.01 96.36

SSBA [6] 97.95 99.39 50.07 96.14 1.88 97.92 98.38 40.12 79.72 97.27 0.36 99.25 97.25 0.06 99.39
Average 98.38 48.84 71.02 95.76 17.49 85.69 98.54 18.37 86.22 97.47 0.23 94.94 97.30 0.10 95.09

Table 7. Baselines with different poison ratios on BadNets.

Defense ANP FT-SAM SAU Ours

Poison Ratio ACC/ASR ACC/ASR ACC/ASR ACC/ASR

1% 92.93/9.61 92.46/1.57 90.85/1.28 92.18/0.68
30% 88.39/27.48 89.77/1.81 88.25/1.57 88.97/0.99
50% 84.88/24.33 87.84/3.17 84.85/3.33 86.90/1.51

8.3. Extend to other tasks/modalities

As suggested by reviewers, D3 is not restricted to vi-
sion/classification tasks. While our focus is vision, we con-
ducted a preliminary test on HiddenKiller [13], a backdoor
attack for NLP. D3 effectively suppressed ASR on SST-2

(88.93% → 1.35%) and AGNews (96.68% → 1.23%), with
≤ 1% ACC drop, suggesting promising cross-modal poten-
tial to explore in future work.

8.4. Experiments on more attacks

Previous experiments have conclusively demonstrated that
our proposed D3 method not only matches but consistently
outperforms state-of-the-art post-training defense techniques
in terms of robustness. Given this established superiority,
the focus here shifts to further validating the broad applica-
bility of D3 across additional attack vectors. Specifically,
we extend our evaluation to include two recently proposed
attacks, namely Adap-Blended [15] and Refool [9], imple-



Table 6. Results on CIFAR-10 with VGG19-BN and poisoning ratio 10.0%.

Defense → No Defense FT ANP [22] FP [8] NC [19]

Attack ↓ ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [4] 90.42 94.43 N/A 88.19 27.59 82.31 90.50 88.43 53.00 88.71 10.61 91.06 89.21 11.31 90.96
Blended [3] 91.91 99.5 N/A 90.08 86.82 55.42 91.66 97.43 50.91 90.28 89.53 54.17 90.07 83.33 57.16
WaNet [12] 84.58 96.49 N/A 91.35 5.72 95.39 89.80 0.90 97.80 90.84 1.94 97.28 91.20 6.88 94.81

LF [23] 83.28 13.83 N/A 87.67 1.82 56.01 89.22 1.41 56.21 88.64 1.34 56.24 86.64 1.36 56.24
Input-aware [11] 88.66 94.58 N/A 91.56 13.08 90.75 89.83 2.79 95.89 91.38 19.81 87.38 89.70 97.02 50.0

SIG [1] 83.48 98.87 N/A 88.01 4.28 97.29 81.93 0.97 98.18 88.22 11.07 93.9 83.48 98.87 50.0
SSBA [6] 90.85 95.11 N/A 89.26 70.22 61.65 90.90 93.18 50.97 89.45 63.14 65.28 90.85 95.11 50.0
Average 87.6 84.69 N/A 89.45 29.93 76.97 89.12 40.73 71.85 89.65 28.21 77.9 88.74 56.27 64.17

Defense → NAD [7] i-BAU [24] FT-SAM [25] SAU [20] D3 (Ours)

Attack ↓ ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [4] 86.48 5.47 92.51 86.01 2.28 93.87 90.34 2.21 96.07 88.2 0.49 95.86 87.33 1.16 95.09
Blended [3] 88.6 83.86 56.17 87.58 69.9 62.64 91.35 20.28 89.33 87.71 2.34 96.48 89.72 6.25 95.53
WaNet [12] 90.73 10.33 93.08 89.76 1.61 97.44 91.83 1.18 97.66 89.35 5.30 95.60 90.91 1.45 97.52

LF [23] 83.72 1.14 56.34 87.68 1.47 56.18 89.85 1.21 56.31 82.08 1.23 55.70 81.3 1.82 55.02
Input-aware [11] 91.0 14.11 90.23 88.29 69.56 62.33 92.05 5.10 94.74 88.61 2.97 95.78 90.4 3.10 95.74

SIG [1] 86.07 7.39 95.74 83.41 5.37 96.71 89.70 3.82 97.52 85.57 3.58 97.64 87.88 2.96 97.96
SSBA [6] 88.33 56.64 67.97 87.56 22.26 84.78 90.27 34.14 80.19 86.49 6.66 92.05 88.5 4.10 94.33
Average 87.85 25.56 78.86 87.18 24.63 79.14 90.77 9.71 87.40 86.86 3.22 89.87 88.01 2.98 90.17

mented under their respective default configurations from
the original papers. As shown in Table 8, D3 achieves consis-
tent and robust defense performance against these advanced
attacks, with all metrics remaining within the expected effec-
tive range. These results reaffirm the method’s capability to
maintain strong adversarial robustness without compromis-
ing classification accuracy.

Table 8. Experiments on more attacks.

Attack Adap-Blended Refool

Defense No Defense Ours No Defense Ours

Poison Ratio ACC/ASR ACC/ASR ACC/ASR ACC/ASR
1% 92.32/67.11 91.26/1.24 92.80/46.17 91.39/1.96
5% 92.01/92.38 91.24/0.48 91.75/84.76 90.83/1.32

10% 91.40/95.18 90.09/0.83 91.08/93.55 90.89/1.67

In addition, we also consider tow recent attack SRA [14]
and TaCT [18], and the results are shown below in Table 9.

Table 9. Experiments on recent attacks and suggested attacks.

Defense Metric SRA [14] TaCT [18]

No Defense ACC/ASR 89.28/92.58 91.54/94.35

D3 ACC/ASR 89.02/1.23 90.95/0.93

8.5. Experiments on more defenses

Here, we include additional evaluations on more defense.
Results in Table 10 shows that D3 can achieve SOTA defense
methods.

Table 10. Experiments on defenses, report ACC/ASR.

Detection In-training Post-training

Attack Spectral AC ABL DBD OTBR RNP D3

BadNets 90.62/74.22 88.89/68.14 84.39/0.00 89.65/1.27 89.78/0.68 87.56/1.65 90.77/0.74

Blended 91.56/88.52 89.62/24.36 87.73/0.77 89.91/89.98 90.65/9.78 86.89/6.79 92.29/0.22

LF 91.72/89.55 90.85/36.58 85.79/2.21 82.98/49.32 90.48/63.89 87.27/9.33 92.37/1.31

8.6. Experiments on untargeted attack

Here, we conduct evaluations on untargeted BadNet and
Blended attacks with 5%/10% poisoning. ASR is measured
as the misclassification rate among originally correctly pre-
dicted samples. D3 reduces ASR to below 2% in all cases
(Table 11), validating its generality.

Table 11. Experiments on Untargeted Attacks.

Attack → BadNet Blended

Pratio ↓ Defense → No defense D3 No defense D3

5% ACC/ASR 91.97/95.32 90.55/0.56 92.65/99.25 91.98/1.15

10% ACC/ASR 90.23/97.61 89.65/1.06 92.44/99.27 91.85/1.86

8.7. Scalability across models/image sizes.

Here, we evaluate D3 on ImageNette (a subset of ImageNet
with large size 320× 320) and a small model VGG-11. D3
achieves low ASR (≤ 1.5%) with minimal clean accuracy
loss (Table 13,14), showing robustness across model scales
and input sizes.



Table 12. Results for ALL-to-ALL attacks on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 10.0%.

Defense → No Defense FT ANP [22] FP [8] NC [19]

Attack ↓ ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [4] 91.89 74.42 N/A 91.56 1.17 86.46 92.27 2.15 86.14 91.98 1.31 86.56 89.84 1.19 85.59
Blended [3] 93.67 86.69 N/A 93.25 81.46 52.4 91.82 2.59 91.12 92.38 13.25 86.07 91.35 31.65 76.36

Input-aware [11] 91.23 85.66 N/A 93.18 75.26 55.2 90.68 1.17 91.97 92.77 1.48 92.09 92.82 14.26 85.7
WaNet [12] 89.91 78.58 N/A 93.15 0.88 88.85 86.30 0.63 87.17 92.96 0.94 88.82 89.91 78.58 50.0

Average 91.68 81.34 N/A 92.78 39.69 70.73 90.27 1.64 89.1 92.52 4.24 88.38 90.98 31.42 74.41

Defense → NAD [7] i-BAU [24] FT-SAM [25] SAU [20] D3 (Ours)

Attack ↓ ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [4] 90.73 1.61 85.82 89.39 1.29 85.32 91.87 1.03 86.68 90.95 1.30 86.09 91.43 0.68 86.64
Blended [3] 92.46 65.95 59.76 90.46 8.83 87.32 92.66 2.09 91.80 91.32 3.19 90.58 92.56 2.30 91.64

Input-aware [11] 92.68 82.22 51.72 90.98 22.47 81.47 93.38 9.05 88.30 91.51 0.90 92.38 92.66 0.83 92.42
WaNet [12] 93.01 0.98 88.8 91.71 1.63 88.48 93.51 0.80 88.89 91.25 1.02 88.78 92.87 0.74 88.92

Average 92.22 37.69 71.53 90.64 8.56 85.65 92.86 3.24 88.92 91.26 1.60 89.46 92.38 1.14 89.90

8.8. Experiments on Multi-targets attacks
In previous experiments, we assumes that attacker only use
one target label. However, in real applications, attackers
may have multiple target labels. To evaluate our method
against such cases, we conduct experiments with ALL-to-
ALLattacks on CIFAR-10 with PreAct-ResNet18 and poison-
ing ratio 10%. Specifically, the target labels for the sample
with original labels y are set to yt = (y+1) mod K where
mod is short for ”modulus”. The experiment results are
summarized in Table 12. From Table 12, we can find that D3
achieves the top-2 defending performance in all attacks and
the lowest average ASR. At the same time, D3 also achieves
the best average DER, which further demonstrates its effec-
tiveness in defending against backdoor attacks with multiple
targets.

Experiments on multi-trigger and multi-target. Here,
we also conducted experiments under combined attacks (e.g.,
BadNet + Blended), and D3 still reduces ASR to ≤ 2%
(Table 15).

Table 13. Experiments on ImageNette+PreAct-ResNet18.

Defense No defense FT-SAM SAU D3

Attack ACC/ASR ACC/ASR ACC/ASR ACC/ASR

BadNets 87.57/99.41 86.85/0.51 84.25/1.85 86.82/0.48

Blended 87.44/98.95 86.24/10.28 83.75/6.89 86.68/1.57

Table 14. Experiments on CIFAR10+VGG11.

Defense No defense D3 No defense D3

Pratio ACC/ASR ACC/ASR ACC/ASR ACC/ASR

5% 88.35/89.97 87.89/0.65 89.52/97.52 88.98/1.32

10% 88.17/93.55 87.42/0.76 89.29/99.23 88.15/1.12

Table 15. Experiments on multi-targets and multi-triggers attack.

Attack No defense D3

Attack-1 Attack-2 ACC/ASR-1/ASR-2 ACC/ASR-1/ASR-2

Blended BadNet 90.22/99.27/95.03 89.78/1.68/0.62
LF BadNet 90.16/98.08/95.15 89.54/1.30/0.52

WaNet BadNet 89.44/90.21/95.40 88.98/0.42/0.57
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