EMD: Explicit Motion Modeling for High-Quality Street Gaussian Splatting

Supplementary Material

A. Overview

The supplementary material includes the subsequent compo-
nents.
 Additional Visualization Videos
* Implementation Details
— Training Schemes
— Training Details
— Parameters and Efficiency
» Parameter Sensitivity

B. Additional Visualization Videos

Please double-click the “Demo Webpage-Please wait un-
til loaded.html” file and open it in your browser. This of-
fline webpage contains videos covering the following experi-
ments:

¢ Self-supervided Comparison

* Box Supervised Comparison

* Novel Trajectory Synthesis

* Temporal Embedding Evolution

Due to the numerous videos, please wait for the webpage
until loaded.

C. Implementation Details

C.1. Training Schemes

LiDAR Prior Initialization. To initialize the positions of the
3D Gaussians, we leverage the LiDAR point cloud captured
by the vehicle instead of using the original SFM [42] point
cloud to provide a better geometric structure. To reduce
model size, we also downsample the entire point cloud by
voxelizing it and filtering out points outside the image. For
colors, we initialize them randomly.

Optimization Objective. Following Street Gaussian, we
introduce the sky supervision loss L, into the original loss
function proposed by S3Gaussian. Subsequently, we get a
composed training loss function which can impose various
constraints to our model.
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Here, Ljcpth is the mean square error (MSE) loss between
the rendered depth map and the estimated depth map from
the LiDAR point cloud, which aids in supervising the ex-
pected position of 3D Gaussians. L fq is also the L2 loss of
semantic features to reduce the gap between both planes. L,
is a total-variational loss based on grids to make rendered

objects smoother. L ., is the main loss to give constraints
to the reconstruction process formulated by:

Ecolor = Ergb + )\ssimﬁsim )

Furthermore, £,.4 is organized as:

»Creg = »Czk + »C'A (18)

where L, is local smoothness regularization for Gaussian
embeddings in the method section. LA represents a com-
bination of regularization for coarse and fine deformations,
restricting their values near zero. We also detail the coeffi-
cients for loss in Tab. 7.

Table 7. Loss function coefficients

)\depth /\feat )‘feat )\tv /\sky /\V'eg

0.5 0.1 0.1 0.1 0.1 0.01

Table 8. Parameter sensitivity analysis on the D32 dataset, highlight-
ing the effect of varying the dimensions of Gaussian embeddings
zj, and temporal embeddings z.,. All experiments are conducted
in the self-supervised setting. Best performances are highlighted in
bold. 1 indicates higher is better, while | indicates lower is better.
We also include the changes in model parameters relative to the
adopted setting.

Full Image Vehicle
z1/z,, Parameters
PSNR1T SSIMT LPIPS| PSNR?T
32/4 / 32.50 0.933 0.082 29.04
128/4 +14400 32.22 0.925 0.086 29.05
8/4 -3600 31.25 0.910 0.128 27.75
32/4 / 32.50 0.933 0.082 29.04
32/16 +14.42M 32.38 0.930 0.081 29.01

32/1 -3.60M 30.55 0.898 0.136 27.04

C.2. Training Details

For S3Gaussian, we train the entire pipeline for 50,000 it-
erations using the Adam optimizer. Following the original
S3Gaussian setup, we perform a warm-up phase for each
scene, employing 5,000 iterations to train a coarse represen-
tation using vanilla 3D Gaussians. After this warm-up phase,
we integrate the proposed dual-scale deformation network,
which is jointly optimized with the HexPlane. To implement
a coarse-to-fine training strategy, temporal embeddings N ()
are progressively increased from N,,,;,, to Ny, 4. in 20,000
iterations, allowing for the gradual motion modeling of ob-
jects. Since S3Gaussian is evaluated on 50 frames per clip



for each scene, we ensure a fair comparison by conducting all
self-supervised validation experiments on the first clip of 32
dynamic scenes. Other configurations, including the detailed
setup of the HexPlane and learning rates, are kept consis-
tent with the S3Gaussian. For StreetGaussian, the entire
method is trained for 30,000 iterations on a subset of eight
selected scenes from the StreetGaussian dataset. Unlike the
self-supervised method, we bind the proposed EMD to the
vehicle Gaussians in each scene. Temporal embeddings are
applied based on the time each vehicle appears within the
scene. All other settings, including detailed configurations,
remain consistent with those described in StreetGaussian.
All experiments are conducted on a single NVIDIA A800
GPU.

D. Parameter Sensitivity

To analyze the sensitivity of model performance to the dimen-
sions of Gaussian embeddings z; and temporal embeddings
Z,, (derived from the learnable embedding matrix W), we
conduct experiments by varying these dimensions. In the
original setup, zy, is set to 32 and z,, to 4. Tab. 8 summa-
rizes the results, demonstrating how these changes influence
performance under the self-supervised setting.

The results reveal that reducing the embedding dimen-
sions leads to significant performance degradation. This is
primarily due to the reduced capacity to effectively model
the motion of dynamic objects, which is crucial for high-
quality reconstruction. On the other hand, increasing the
embedding dimensions offers only marginal performance
improvements. However, due to the large number of Gaus-
sians in the driving scenes, the higher embedding dimen-
sions result in a substantial increase in the total number of
model parameters, leading to a higher computational cost.
These findings highlight the trade-off between embedding
dimension size and overall model efficiency. While lower di-
mensions compromise the ability to capture dynamic motion,
higher dimensions introduce considerable overhead without
proportional gains in performance. The adopted embedding
configuration achieves a good balance, maintaining strong
performance while keeping the parameter count manageable.

E. Limitation

Although EMD effectively addresses the challenge of mod-
eling dynamic objects with varying speeds by incorporating
learnable embeddings, some limitations remain. Existing
street Gaussian methods do not account for environmental
lighting, yet lighting effects play a crucial role in the quality
of reconstructions under different lighting conditions. In
future work, we plan to explore the possibility of develop-
ing a plug-and-play technique to enhance lighting effects in
existing methods.
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