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Supplementary Material

7. Overview
The supplementary material encompasses the subsequent
components.
• Video for continuous gaze redirection
• Implementation details
• Dataset and pre-processing details
• Supplementary experiments

– Ablation study on cross-dataset
– Comparison with the FLAME-based method
– GazeGaussian vs baseline + expression-guided

• Additional visualization results
– Visualization for transformed Gaussians
– Visualization for identity morphing
– Visualization for ablation study
– Visualization for cross-dataset comparison

• Ethical considerations and limitations

8. Video for continuous gaze redirection
Please refer to the video “continuous gaze redirection.mp4”
in the supplementary material for continuous gaze redirec-
tion results on the ETH-Xgaze. The side-by-side visualiza-
tion showcases smooth transitions and high-quality novel
gaze synthesis produced by GazeGaussian.

9. Implementation details
We use the Adam optimizer [19], with a learning rate that
follows an exponential decay schedule, starting at 1× 10−4.
We use the VGG-based network pre-trained on ImageNet, as
provided by the GazeNeRF [36] implementation, and fine-
tune it on the ETH-XGaze training set for the functional loss
LG as the pre-trained gaze estimator. Additionally, we utilize
the ResNet50 backbone from the GazeNeRF [36] framework,
trained on the ETH-XGaze training set, to output gaze and
head pose for evaluation purposes. All experiments are
conducted on an NVIDIA 4090 GPU. We first train an SDF
network to extract the neutral mesh and initialize the two-
stream Gaussian parameters in 10 epochs. The full pipeline
is then trained for an additional 20 epochs until convergence.
The loss weights are described in the method section.

10. Dataset and pre-processing details
Following the baseline GazeNeRF [36], all experiments are
conducted on four widely used datasets.
ETH-XGaze [58] is a large-scale gaze estimation dataset
featuring high-resolution images across a wide range of
head poses and gaze directions. Captured with a multi-view
camera setup under varying lighting conditions, it includes

756,000 frames from 80 subjects for training. Each frame
contains images from 18 different camera perspectives. Ad-
ditionally, a person-specific test set includes 15 subjects,
each with 200 images provided with ground-truth gaze data.
ColumbiaGaze [39] contains 5,880 high-resolution images
from 56 subjects. For each subject, images were taken in
five distinct head poses, with each pose covering 21 preset
gaze directions, allowing for detailed gaze estimation in con-
trolled conditions.
MPIIFaceGaze [55, 56] is tailored for appearance-based
gaze prediction. MPIIFaceGaze offers 3,000 face images for
each of 15 subjects, paired with two-dimensional gaze labels
to facilitate gaze estimation research.
GazeCapture [21] is a large-scale dataset collected through
crowd-sourcing, featuring images captured across different
poses and lighting conditions. For cross-dataset comparison,
we use only the test portion, which includes data from 150
distinct subjects.
Pre-processing. We follow the preprocessing steps in
GazeNeRF [36] and Gaussian Head Avatar [51]. The origi-
nal resolution of ETH-XGaze [58] images is 6K × 4K, while
images from other datasets vary in resolution. To standardize,
we preprocess all images using the normalization method,
aligning the rotation and translation between the camera and
face coordinate systems. The normalized distance from the
camera to the face center is fixed at 680mm. To extract
3DMM parameters and generate masks for the eyes and face-
only regions, we utilize the face parsing model from [63].
GazeGaussian is trained on a single NVIDIA 4090 GPU
for 20 epochs on the train set from ETH-XGaze. During
inference, GazeGaussian fine-tunes on a single input image,
taking approximately 30 seconds for fine-tuning and 0.2
seconds per image for generation.

11. Supplementary experiments

11.1. Ablation study on cross-dataset
To further validate the effectiveness of each proposed com-
ponent, we conduct an ablation study on the cross-dataset
evaluation to assess the generalization capability of our full
pipeline. As shown in Tab. 4, the results are consistent with
the ablation study in the main text. The proposed Gaussian
eye rotation representation significantly improves eye redi-
rection accuracy while ensuring robust redirection across
cross-domain datasets. Additionally, the expression-guided
neural renderer preserves the identity characteristics of the
input image, enabling generalization ability across different
subjects. From the ablation study on cross-dataset, we can
further validate the importance of each component.



Table 4. Component-wise ablation study of GazeGaussian on the ColumbiaGaze, MPIIFaceGaze and GazeCapture datasets.

Two-
stream

Gaus.
Eye Rep.

Exp.
Guided

ColumbiaGaze MPIIFaceGaze GazeCapture
Gaze↓ Head↓ LPIPS↓ ID↑ Gaze↓ Head↓ LPIPS↓ ID↑ Gaze↓ Head↓ LPIPS↓ ID↑

✓ 8.996 4.494 0.325 49.286 19.787 8.491 0.321 34.483 15.697 13.740 0.260 33.393
✓ ✓ 9.143 4.509 0.324 52.805 16.689 8.578 0.303 35.194 15.926 14.869 0.261 36.004
✓ ✓ 7.799 3.754 0.284 57.252 11.938 6.860 0.257 35.614 10.339 8.208 0.216 40.458

✓ ✓ 7.710 3.899 0.280 58.969 12.559 6.188 0.246 37.444 11.296 8.460 0.224 42.294
✓ ✓ ✓ 7.415 3.332 0.273 59.788 10.943 5.685 0.224 41.505 9.752 7.061 0.209 44.007

Table 5. Comparison between baselines + expression-guided neural renderer and GazeGaussian on ETH-xgaze

Method Gaze↓ Head
Pose↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ Identity

Similarity↑ FPS↑

GazeNeRF 6.944 3.470 0.733 15.453 0.291 81.816 45.207 46
GazeNeRF + EGNR 6.854 3.025 0.764 16.147 0.258 67.219 50.268 44
GHA 30.963 8.498 0.638 12.108 0.359 74.560 27.272 91
GHA + EGNR 28.374 6.533 0.714 14.213 0.305 69.101 41.332 90

GazeGaussian (Ours) 6.622 2.128 0.823 18.734 0.216 41.972 67.749 74

11.2. Comparison with the FLAME-based method

Table 6. Image quality comparison with
the FLAME-based method.

Methods SSIM ↑ PSNR ↑ LPIPS ↓
Wang et al. 0.732 19.144 0.265
Ours 0.823 18.734 0.216

The FLAME-based
baseline by Wang
et al. [42] is not
open source and
lacks metrics in gaze
redirection in its
published materials. Nonetheless, we have cited the reported
results on the ETH-Xgaze dataset in Wang’s paper and
provided a comparison in Tab 6. The results demonstrate
that our GazeGaussian still achieves better synthesis quality,
especially for perceptual metrics.

11.3. GazeGaussian vs baseline + expression-guided

We make a comparison between GazeGaussian and base-
lines (GazeNeRF, Gaussian Head Avatar) enhanced with
the expression-guided neural renderer (EGNR) on the ETH-
XGaze dataset. As shown in Tab. 5, integrating EGNR
into GazeNeRF and Gaussian Head Avatar (GHA) leads
to noticeable improvements in gaze redirection accuracy
and image quality. This demonstrates the versatility of the
proposed expression-guided neural renderer in enhancing
facial synthesis and better capturing identity-specific expres-
sions. Although GHA is restricted to animating single head
avatar, it can benefit from enhanced generalization through
expression-guided neural renderer. However, even with the
added EGNR, the performance of GazeNeRF and GHA re-
mains limited compared to GazeGaussian. The fundamental
constraint lies in GazeNeRF’s representation, which lacks
the explicit modeling of gaze and facial expression dynamics
offered by GazeGaussian’s two-stream Gaussian structure.
GHA restricts to full head animation, missing two-stream
modeling for face and eye disentanglement, leading to de-
creased performance.
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Figure 7. Visualization of transformed two-stream Gaussians after
deformation from the canonical space.

12. Supplementary visualization

12.1. Visualization for transformed Gaussians

To demonstrate the advantages of GazeGaussian’s explicit
control of head pose and gaze direction for head and eye
regions, we visualize the Gaussians after deformation from
the canonical space. As shown in Fig. 7, the explicit support
for rotation and translation in GazeGaussian allows the de-
formed Gaussians to form a reasonable spatial distribution
and accurate color representation. This capability enables
precise geometric control and high-fidelity image rendering.
In contrast, GazeNeRF performs rotations only on the fea-
ture map level, failing to fully deform in 3D space, which
limits its performance compared to our method.

12.2. Visualization for identity morphing

Fig. 8 showcases identity morphing results on the ETH-
XGaze dataset. We randomly select two subjects with iden-
tical gaze directions and head poses. By interpolating their
latent codes, we generate a smooth transition between the



Face latent code interpolation

Figure 8. Face morphing results on the ETH-XGaze dataset.

two identities while keeping the gaze direction and head pose
consistent. This visualization demonstrates the capability of
GazeGaussian to preserve gaze alignment and head orienta-
tion during synthesis, even as the facial features gradually
change according to the interpolated latent codes.

12.3. Visualization for ablation study
Fig. 10 presents additional qualitative results from our ab-
lation study conducted on the ETH-XGaze dataset. These
visualizations highlight the importance of each proposed
component in GazeGaussian.

Without the Gaussian eye rotation representation, the
model struggles to achieve accurate eye control, resulting in
noticeable deviations in gaze direction and reduced realism
in the eye region. This demonstrates the critical role of the
Gaussian eye rotation representation in enabling precise and
realistic gaze redirection. Additionally, the absence of the
expression-guided neural renderer leads to a significant loss
in facial detail and expression fidelity. With the renderer in-
cluded, the synthesized images exhibit finer facial details and
improved consistency with the target identity, showcasing
the renderer’s effectiveness in enhancing the overall quality
of face synthesis. These results confirm that both compo-
nents contribute significantly to the superior performance
and visual fidelity of GazeGaussian.

12.4. Visualization for cross-dataset comparison
We provide additional cross-dataset comparison visualiza-
tions for MPIIFaceGaze (Fig. 11), ColumbiaGaze (Fig. 12)
and GazeCapture (Fig. 13). Compared to the baseline, Gaze-
Gaussian achieves high-fidelity gaze redirection with supe-
rior image synthesis quality.

13. Ethical considerations and limitations
Our approach allows for the creation of lifelike portrait
videos that may be exploited to spread misinformation, sway
public opinion, and erode trust in media, with grave societal

GazeGaussianTarget Image GazeGaussianTarget Image

Figure 9. Example of a failure case.

impacts. Thus, developing trustworthy techniques to discern
real from fake content is crucial. We firmly oppose any unau-
thorized or harmful use of this technology and highlight the
need to address ethical issues in its implementation.

While GazeGaussian represents a significant advance-
ment in gaze redirection quality, there is still one unresolved
issue. Due to limitations in facial tracking models such as
FLAME, it remains challenging to accurately model acces-
sories such as glasses, earrings, and even hair details as
shown in Fig. 9. An existing method [26] has attempted to
use cylindrical Gaussian representations to model hair. To
further enhance GazeGaussian, improving the 3DGS facial
representation will be a key focus of our future work.



Oursw/o Two-stream
Gaussians 

Vanilla 
GazeGaussian

w/o Gaussian
Eye Rep.

w/o Expression-
Guided

Ground Truth Oursw/o Two-stream
Gaussians 

Vanilla 
GazeGaussian

w/o Gaussian
Eye Rep.

w/o Expression-
Guided

Ground Truth

Figure 10. Additional qualitative ablation study on the ETH-XGaze dataset.
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Figure 11. Cross-dataset visualization on MPIIFaceGaze.
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Figure 12. Cross-dataset visualization on ColumbiaGaze.
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Figure 13. Cross-dataset visualization on GazeCapture.
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