
Improving Multimodal Learning via Imbalanced Learning

Dataset CREMA-D AVE KS MOSI

Method Acc Acc Acc Acc

Concatenation 58.83 66.15 64.97 76.92

Summation 62.32 67.42 64.15 76.83

Film 56.92 59.91 57.83 76.99

Gated 57.79 65.82 63.72 77.19

Concatenation† 75.26 71.90 74.39 79.94

Summation† 75.06 72.62 74.49 80.14
Film† 65.49 68.81 72.26 79.20

Gated† 75.14 70.22 75.31 79.27

Table 1. Performance on CREMA-D, AVE, KS, and MOSI
datasets with various fusion methods. † indicates ARL is applied.

Comparison on conventional fusion methods. In this
experiment, we apply the ARL strategy to four vanilla fu-
sion methods: Concatenation Summation, Film, and Gated.
Among these, Summation is the type of late fusion method
that fuses information at the logit level. The other three are
the intermediate fusion methods that fuse information at the
representation level.

As shown in Table 1, the accuracy of the visual-only
model on the CREMA-D dataset is better than all of the
vanilla fusion methods, which indicates that the learning of
the multimodal model is insufficient. After combining with
ARL, the performance of all the vanilla fusion methods con-
sistently gains considerable improvement on all datasets,
verifying the effectiveness and flexibility of our method.
In particular, for Gated fusion, ARL achieves +18.14%,
+9.8%, +11.59%, and +2.08% accuracy improvement on
the CRAME-D, AVE, KS, and CEFA datasets, respectively,
showing its superiority.

Adaptation to other optimizers. To explore the ef-
fectiveness of ARL in combination with other optimizers
beyond SGD, we apply it to widely used optimizers Ada-
Grad and Adam. As shown in Table 2, we empirically show
that ARL can work with different optimizers well and gain
much performance improvement. The results show that our
method can be well adapted to different optimizers, achiev-
ing consistent performance improvement.

Dataset CREMA-D AVE KS
Optimizer Acc Acc Acc

SGD 58.83 66.15 64.97
SGD† 75.26 71.90 74.39
Adam 62.15 65.16 60.28

Adam† 69.28 72.71 73.51
AdaGrad 58.62 66.54 57.88

AdaGrad† 67.51 70.64 68.81

Table 2. Ablation experiments of optimizers on different datasets.
† indicates ARL is applied.

The ablation explanation of temperature coefficient
T. The experiment results on the CRAME-D dataset are
shown in Table 3. We can see that as T increases, the per-
formance first increases and then decreases, and the optimal
performance is achieved when T = 8. This is because too
large T may change the modality contribution ratio from
less than the variance ratio to greater than the variance ra-
tio, resulting in sub-optimal results.

T 1 4 8 12
Acc 73.25 74.12 75.26 74.65

Table 3. The ablation explanation of temperature coefficient T

The ablation explanation of γ. The experiment results
on the CRAME-D dataset are shown in Table 4. We can see
that as γ increases, the performance first increases and then
decreases, and the optimal performance is achieved when
γ = 4. This is because two large γ may suppress the op-
timization of multimodal loss and result in sub-optimal re-
sults.

γ 1 2 4 8
Acc 73.35 75.23 76.68 75.49

Table 4. The ablation explanation of hype-parameter γ
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0.1. Derivation for Bias(f(x), y)2

According to w0 +w1 = 1, we can rewrite Bias(f(x), y)2

as follows,

Bias(f(x), y)2 = E [w0(s
m0 − y) + w1(s

m1 − y)]
2

= w2
0E(sm0 − y)2 + w2

1E(sm1 − y)2 + 2w0w1E(sm0 − y)E(sm1 − y)

= w2
0Bias(sm0 , y)2 + w2

1Bias(sm1 , y)2 ++2w0w1Bias(sm0 , y)Bias(sm1 , y)

= (w0Bias(sm0 , y) + w1Bias(sm1 , y))2

(1)
Since w0 > 0,w1 > 0,Bias(sm0 , y) > 0, and
Bias(sm1 , y) > 0, minimizing the Bias(f(x), y)2 is
equivalent minimizing the following target,

w0Bias(sm0 , y) + w1Bias(sm1 , y) (2)

Since w0 + w1 = 1, we can use the Lagrange multiplier
method to obtain the solution as follows,


w0 =

Bias(sm1 , y)

Bias(sm1 , y)−Bias(sm0 , y)
(3)

w1 =
−Bias(sm0 , y)

Bias(sm1 , y)−Bias(sm0 , y)
(4)

0.2. Derivation for V ar(f(x))

According to w0 + w1 = 1, we can rewrite V ar(f(x)) as
follows,

V ar(f(x)) =
[
(w0s

m0 + w1s
m1)2

]
− E [w0f(x) + w1f(x)]

= (w2
0E

[
(sm0)2

]
+ w2

1E
[
(sm1)2

]
+ 2w0w1E [(sm0)]E [(sm1)])

− (w2
0E[sm0 ]2 + w2

1E[sm1 ]2 + 2w0w1E [(sm0)]E [(sm1)])

= (w2
0E

[
(sm0)2

]
+ w2

1E
[
(sm1)2

]
− w2

0E[sm0 ]2 + w2
1E[sm1 ]

= w2
0(E

[
(sm0)2

]
− E[sm0 ]2) + w2

1(
2E

[
(sm1)2

]
− E[sm1 ]2)

= w2
0V ar(sm0) + w2

1V ar(sm1)
(5)

Since w0 + w1 = 1, we can use the Lagrange multiplier
method to obtain the solution as follows,


w0 =

V ar(sm1)

V ar(sm1) + V ar(sm1)
(6)

w1 =
V ar(sm0)

V ar(sm1) + V ar(sm1)
(7)
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