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Supplementary Material

A. Denoising and Estimating unknown noise
parameters with Total Variation for Point
cloud

In image analysis, Total Variation (TV) is primarily used as
a quality metric to evaluate the denoising result by calculat-
ing the remaining high-frequency content [43]. A lower TV
value indicates a smoother output with fewer irregularities,
whereas a higher TV value suggests the presence of resid-
ual noise or structural inconsistencies. In TV regularization,
the optimization process seeks to minimize the total varia-
tion of an image, reducing sharp pixel intensity changes that
correspond to noise, while preserving significant transitions
corresponding to image edges. This has inspired us to pro-
pose similar metrics for point clouds.

A.1. Definition of Total Variation for Point Cloud
In this section, we extend the idea of minimizing gradi-
ent magnitudes to point cloud data, where the goal is to
reduce noise by minimizing the geometric differences be-
tween points and their neighbors. In particular, Total Varia-
tion for Point Cloud (TVPC) is defined as:

TVPC =

N∑
i=1

∑
j∈neighbors(i)

wi,j ·
√
∥pi − pj∥2 + ϵ2 (8)

where N is the total number of points, wi,j represents the
weight between point pi and its neighbor pj , ϵ is a small
positive constant.

√
∥p∥2 + ϵ2 in Eq. (8) is a smooth ap-

proximation of the L1 norm, which is introduced in [29]
to handle outliers and maintain robustness. Here, ϵ helps
to smooth the variations and prevent over-penalization of
boundary outliers, ensuring numerical stability. For sim-
plicity we set wi,j to a constant in our method. Another
choice for wi,j is

wi,j = exp

(
−∥pi − pj∥2

2σ2

)
, (9)

with σ controlling the scale of the Gaussian kernel [10] .
This is an analogy to the difference of pixel intensity

in TV definition for images. Also we note that TVPC is
similar to the Graph Laplacian Regularizer [56] but with
smoothed L1 loss.

A.2. Validation of TVPC in estimating the noise level
Fig. 4 shows the TVPC , CD and P2M values with differ-
ent noise parameter σ for the inference result on PU-Net
dataset with σ=0.03. We can observe that TVPC follows

Figure 4. Change of average TVPC , CD and P2M values with
noise parameter σ on the PU-Net dataset[55] .

a similar trend as CD and P2M and reaches a minimal
around the true σ value. Note that the clean point clouds
are not needed for calculation of TVPC . This validates the
use of TVPC in estimating unknown noise parameters for
real world datasets.

B. Performance Comparison and Ablation
Study of Point Cloud Backbones

Tab. 8 evaluates the effectiveness of different point cloud
backbones,the analysis reveals that the KPConv backbone
does not inherently improve the performance of DMR or
Score-U, suggesting that the superior results of our method
are not solely attributable to the KPConv network archi-
tecture but rather to our novel Bayesian approach. Addi-
tionally, we show the result using PointNet++ backbone,
which underperforms in sparse point cloud regions and un-
der higher noise conditions compared to KPConv, reinforc-
ing the appropriateness of our chosen backbone for the pro-
posed framework.

Table 8. Results on the PU-Net 10k dataset (results of 50k dataset
are not included due to space limitation). Results with * are taken
from Tab. 2. in the main text for comparison purpose.

Noise level 1% 2% 3%
Dataset Model CD P2M CD P2M CD P2M

PU-Net

DMR-Ukpconv 33.89 28.16 25.53 20.68 20.69 15.99
*DMR-U 5.313 2.522 6.455 3.317 8.134 4.647

Score-Ukpconv 3.494 1.077 4.928 1.909 7.250 3.596
*Score-U 3.107 0.888 4.675 1.829 7.225 3.762

OursPointNet++ 3.689 1.287 7.938 4.370 13.382 9.028
*Ours 2.848 1.106 4.190 1.818 5.583 2.947



C. Additional visualization results
Figs. 5 to 13 provide additional visualization results with varying noise levels on ModelNet-40 and PU-Net. Points with
smaller error are colored more blue, and otherwise colored yellow.

Figure 5. Additional visualization results of different algorithms on ModelNet-40 dataset with Gaussian noise. The noise level is set to 1%.



Figure 6. Additional visualization results of different algorithms on ModelNet-40 with Gaussian noise. The noise level is set to 2%.

Figure 7. Additional visualization results of different algorithms on ModelNet-40 dataset with Gaussian noise. The noise level is set to 3%.



Figure 8. Additional visualization results from PU-Net dataset. The noise level is set to 1%.

Figure 9. Additional visualization results from PU-Net dataset. The noise level is set to 2%.



Figure 10. Additional visualization results from PU-Net dataset. The noise level is set to 3%.

Figure 11. Visual comparison of additional denoising results from ModelNet-40 dataset with simulated LiDAR noise. The noise level is
set to 0.5%.



Figure 12. Visual comparison of additional denoising results from ModelNet-40 dataset with simulated LiDAR noise. The noise level is
set to 1%.

Figure 13. Visual comparison of additional denoising results from ModelNet-40 dataset with simulated LiDAR noise. The noise level is
set to 1.5%.
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