
PCR-GS: Colmap-Free 3D Gaussian Splatting via Pose Co-Regularizations
Supplementary Material

Yu Wei1 Jiahui Zhang1 Xiaoqin Zhang2 Ling Shao3 Shijian Lu1

1Nanyang Technological University 2Zhejiang University of Technology
3UCAS-Terminus AI Lab, University of Chinese Academy of Sciences

1. Overview
This supplementary material provides more details and
experimental results of the proposed PCR-GS. In the
following sections, we present more details about the
Tanks&Temples dataset, more qualitative results, ethical
considerations, limitation analysis, and hyperparameter
configurations.

2. Dataset
We reconstruct our Tanks&Temples dataset to create scenes
with more complex trajectories from the original video as
shown in Table. 1 compared with the original setting shown
in Table. 2. Specifically, we sample frames from longer
trajectories at much lower frame rates resulting in drastic
rotation and translation of camera poses between adjacent
frames. This operation introduces challenges when recon-
structing 3D scenes without camera pose priors.

Besides, on the dataset split strategy, we follow the strat-
egy used in CF-3DGS. We assess novel view synthesis qual-
ity and pose estimation accuracy on both indoor and outdoor
scenes. For each scene, we use seven images per eight-
frame clip for training and evaluate synthesis quality on the
remaining images.

3. More Qualitative and Quantitative Results
We also train and test our method on CO3D-V2 [3] dataset.
2 scenes are selected from the dataset. CO3D-V2 com-
prises of object-centric videos, in which large and compli-
cated camera motions make reconstruction a very challeng-
ing task. The quantitative comparision results are shown in
Table. 3 and 4.

We present additional qualitative results of novel view
synthesis on Tanks&Temples, Free-Dataset [4] and CO3D-
V2 compared with pose-free methods including Nope-
NeRF [1] and CF-3DGS [2]. As Fig. 1, Fig. 2 and Fig. 3
show, our proposed method can render images with finer
structures and textures. This visualization proves that the

Scenes Type Seq. length Fps
Church Indoor 20s 7
Barn Outdoor 20s 5
Museum Indoor 30s 4
Family Outdoor 20s 6
Horse Outdoor 20s 6
Ballroom Indoor 40s 1.5
Francis Outdoor 50s 2
Ignatius Outdoor 30s 4

Table 1. Details of the sampling strategy on our Tanks&Temples
dataset. Fps refers to the number of frames per second, while
Seq. length represents the total duration (in seconds) of the sam-
pled video. Compared to the Tanks&Temples dataset used in CF-
3DGS[1], we sampled fewer frames per second from longer cam-
era trajectories to increase rotation and translation between adja-
cent frames. The average frame rate for all the scenes is 4 fps.

proposed PCR-GS can effectively reconstruct 3D scenes
with complex camera trajectories without relying on pose
priors.

4. Ethical Consideration
While the proposed PCR-GS excels at learning photo-
realistic scene representations, its capabilities could poten-
tially be misused for illegal purposes, such as facilitating
image forgery. To address such concerns, a possible solu-
tion is to incorporate watermarks into the rendered images,
clearly indicating that they are synthetic.

5. Limitation
Despite the superior performance of PCR-GS, our method
relies on DINO feature reprojection to regularize relative
pose, which introduces inaccuracies during reprojection.
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Figure 1. More qualitative results of novel view synthesis. We compare the results from baseline models and PCR-GS on the scenes
’Ballroom’, ’Family’, and ’Ignatius’ from Tanks&Temples. The highlighted regions demonstrate the superior reconstruction performance
of our method.
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Figure 2. More qualitative results of novel view synthesis. We compare the results from baseline models and PCR-GS on the scenes
’stair’, ’hydrant’, and ’pillar’ from Free-Dataset. The highlighted regions demonstrate the superior reconstruction performance of our
method.
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Figure 3. More qualitative results of novel view synthesis. We compare the results from baseline models and PCR-GS on the scenes
’Apple’ and ’Plant’ from CO3D-V2. The highlighted regions demonstrate the superior reconstruction performance of our method.

Scenes Type Seq. length Fps
Church Indoor 14s 29
Barn Outdoor 15s 10
Museum Indoor 10s 10
Family Outdoor 6s 33
Horse Outdoor 6s 20
Ballroom Indoor 8s 19
Francis Outdoor 15s 20
Ignatius Outdoor 6s 20

Table 2. Details of the sampling strategy on the Tanks&Temples
dataset reported in CF-3DGS. Fps refers to the number of frames
per second, while Seq. length represents the total duration (in sec-
onds) of the sampled video. The average frame rate for sampling
original dataset used in CF-3DGS is 20 fps.

As the foundation of reprojection, the depth value of each
pixel is rendered from 3D Gaussians pre-trained on a single
frame, which may lead to scale and shift ambiguity. Such
depth bias may limit the accuracy of the feature reprojec-

CO3D-V2 CF-3DGS PCR-GS (ours)
RPE t↓ RPE r↓ ATE↓ RPE t↓ RPE r↓ ATE↓

Apple 0.541 0.571 0.020 0.544 0.569 0.019
Plant 0.626 1.765 0.038 0.538 1.241 0.021
Mean 0.584 1.168 0.029 0.541 0.905 0.020

Table 3. Quantitative comparisons on pose estimation over CO3D-
V2. The best score is in bold.

CO3D-V2 CF-3DGS PCR-GS (ours)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Apple 18.53 0.68 0.43 18.50 0.72 0.40
Plant 20.46 0.91 0.29 20.59 0.94 0.26
Mean 19.50 0.80 0.36 19.55 0.83 0.33

Table 4. Quantitative comparisons on novel view synthesis over
CO3D-V2. The best score is in bold.

tion. Moving forward, we will investigate a better way to
provide precise and unbiased depth prediction before repro-
jection operation.



6. Hyperparameter Configurations
We leverage DINO feature reprojection regularization and
wavelet-based frequency regularization to regularize the
camera pose during the training process. The weight of
each regularization term in the loss function is determined
through extensive experimentation. Following the configu-
ration in CF-3DGS [2], the RGB regularization is composed
of a L1 loss and a D-SSIM of the rendered image and the
ground truth:

Lrgb = (1− λ)L1 + λLD-SSIM. (1)

We use λ = 0.2 for all experiments. Meanwhile, we set the
weights of the feature reprojection regularization term and
wavelet-based frequency regularization term in the total loss
function to 0.2. The total loss function is illustrated in Eq. 2.

Ltotal = λ0LRGB + λ1LFeat + λ2LFreq, (2)

where LRGB is the RGB regularization term as defined in
Eq. 1, while LFeat and LFreq denote the feature regularization
term and frequency regularization term, respectively. The
weights for these terms are set as λ0 = 0.6, λ1 = λ2 = 0.2.
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