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A. Dataset Analysis and Examples

Fig. 1 provides further analysis of the dataset. Fig. 1a illus-
trates the annotation density of TrackVerse by showing the
number of tracks per unit of time against the total duration
in seconds. While the majority of the dataset comprises time
units with fewer tracks, the graph also highlights instances
of highly complex scenes where more than 26 objects are
detected per unit time. Fig. 1b shows the motion statistics
of all object tracks in the dataset. The motion intensity is
calculated as the 90th quantile of the optical flow magni-
tudes within a frame and averaged over time. Fig. 1c fur-
ther breaks down the motion intensity among the 50 most
common classes. As expected, the motion intensity varies
significantly across different object classes, with static ob-
jects like coffee table and sofa presenting the lowest motion
intensity, and objects often depicted in motion like base-
ball cap and dog the highest. Fig. 1d shows the redundancy
statistics between tracks of a given class. To measure re-
dundancy we sample 50 tracks per class and calculate the
nearest neighbor distance between their ResNet-50 features.
Although we have identified some examples with high re-
dundancy, where the same object is tracked multiple times,
the majority of classes have low redundancy, indicating that
the dataset is diverse and contains a wide variety of object
instances.
Failure Modes There are several ways in which the pipeline
can produce suboptimal object tracks. Shown in Fig. 3 are
examples of the main types of possible failures. Although
the failure modes are difficult to quantify within our dataset,
they are relatively rare and we believe they do not sig-
nificantly affect the overall quality of the representations
learned in the dataset. However, they are important to con-
sider when using the dataset for training and evaluation.
• Object Switch: This occurs when one track focuses on

different objects at different points in time. This is the
worst type of failure as it is detrimental to the variance-
aware contrastive framework, i.e., two different objects
would be trained to be predictably variant from one an-
other. This type of failure appears to be rare as the track-
ing method heavily weights appearance features.

• Cartoon: Although we filtered out cartoons before detec-
tion and tracking, not all were correctly identified.

• Incorrect Label: Some tracks have incorrect labels, which
disrupts the class balancing of the dataset. Typically, in-
correctly labeled tracks still share some attributes with
the predicted class (in the example in Fig. 3 the guitar
body has a similar color and glossy appearance to that of

a piggy bank).
• ID Switch: This is the opposite case as Object Switch.

One object fails to be a single contiguous track and in-
stead belongs to several tracks. This may happen due to
quick changes in the scene or long occlusions.

B. Pipeline Implementation Details

B.1. Scene Segmentation

To split videos into individual scenes, we employ the
AdaptiveDetector algorithm provided by PySceneDetect [2]
Python API. The AdaptiveDetector functions as a two-
pass system: it begins by employing the ContentDetector
to evaluate changes in frame content, identifying fast cuts
by analyzing shifts in color and intensity between consecu-
tive frames. Specifically, changes are measured in the HSV
color space and compared against a set threshold to pinpoint
the occurrence of a fast cut, indicating a scene transition. In
its second pass, the AdaptiveDetector applies a rolling aver-
age to the initial frame scores. This method helps mitigate
false detections that can arise from camera movements and
other similar disturbances, thereby enhancing the accuracy
of the scene segmentation.

B.2. Scene Filtering

Two content-aware filters are used to remove unwanted
scenes from the dataset.
Cartoon Filter After downloading the initial set of videos,
we encountered an abnormally large number of cartoon
content (over 20%). Since our goal is to learn representa-
tions of natural objects, we trained and deployed a cartoon
detector for filtering. The model (an ImageNet-pretrained
ResNet18) was finetuned on Cartoon classification dataset1

containing 100k cartoon images and real images randomly
sampled from TrackVerse. The model was trained for 10
epochs with a batch size of 4 and a learning rate of 0.0001.
We used this model to remove all segments predicted as car-
toons with a confidence threshold of 0.5.
Static Visual Content Filter We also filtered out scenes
with static visual content using a static visual filter. This
filter identifies and removes videos with minimal frame-to-
frame changes, ensuring that dynamic and informative con-
tent is retained. The filter processes each video frame by
frame, comparing consecutive grayscale frames to calculate
the rate of pixel change. Videos where the average change

1https://www.kaggle.com/datasets/volkandl/cartoon-classification

1



(a) Annotation Density (b) Motion

(c) Motion intensity among the 50 most common predicted classes.

(d) Within class track redundancy among the 50 most common predicted classes.

Figure 1. Additional analysis on the Full TrackVerse. (a) The total cumulative duration in seconds that had a specific number of tracks per unit time; (b)
Motion statistics of all object tracks; (c) Box plot of optical flow magnitudes (90th quantile magnitude within a track) across the 50 most common object
categories; (d) Box plot of nearest neighbor distances between ResNet-50 features of tracks within a class across the 50 most common object categories.

rate remains below a threshold of 0.1 are classified as static
and excluded from the dataset. This approach helps focus
the dataset on visually dynamic content suitable for repre-
sentation learning.

B.3. Object Parsing

When optimizing the object tracking pipeline, both accu-
racy and efficiency play a crucial role in creating a large-
scale dataset of object tracks. Decreasing the size of input
images to DETIC is one of the most effective ways to reduce
detection time, but this also degrades performance. To eval-
uate this tradeoff, we evaluated the performance of DETIC

on the LVIS validation data for a variety of input sizes. The
results of these tests can be found in Fig. 4. Fig. 4a shows
the miss rates at different frame sizes; an object is consid-
ered missed if there are no high confidence detections (de-
fined as confidence > 0.55) with an IOU greater than 0.5.
Classification accuracy (Fig. 4b) is reported for all detected
objects. Fig. 4c shows the average time detection takes per
image. Choosing an input frame size of 480 balances low
miss rate/high accuracy with low detection time. For all de-
tected objects, DETIC has a top-1 accuracy of 69.3% and a
top-5 accuracy of 92.0%.

Several parameters of the detection-tracking pipeline are
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Figure 2. Dataset example. From each video clip, all objects are localized and tracked over time to form the TrackVerse dataset.
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Figure 3. Failure cases within the dataset.

(a) Miss Rate (b) Accuracy (c) Detection Time

Figure 4. Frame size evaluation on the LVIS dataset. The chosen configu-
ration is highlighted in red.

critical for tracking quality. The 2016 Davis dataset [7] is a
video object segmentation dataset. This dataset was chosen
for evaluating our pipeline as the segmentations are a vari-
ety of human, animal, and inanimate objects. All segmenta-
tion masks were converted to bounding boxes for evaluation
purposes.

We used the Davis dataset to optimize 8 different param-
eters of the tracking pipeline. Specifically,
• Confidence Threshold: All detections with confidences

below this threshold are removed.
• Frame Rate: Frames per second, all videos are originally

30 fps.
• Frame Size
• Matching Threshold: A high confidence detection

matches to a track if the matching score is above this
threshold.

• Motion Weight: Amount to weight motion information
(i.e., bounding box overlap) compared to appearance in-
formation (i.e., Detic features) when matching detections
to tracks. Appearance weight and motion weight always
sum to 1.

• Non-maximum suppression (NMS): Removes all but the
highest confidence detection for all detections with IOU
overlap greater than this threshold.

• IOU Low Threshold: A low confidence detection
matches a track if its IOU with the track is above this
threshold.

• Tracking Threshold: A new track is created if a detec-
tion’s confidence is above this threshold and does not

match any existing tracks.
For evaluation, we primarily use Multiple Object Track-

ing Accuracy (MOTA), defined as

MOTA = 1− FN + FP + IDS

T
, (1)

where FN is the number of false negatives (i.e., missed de-
tections), FP is the number of false positives (i.e., additional
detections not registered by Davis), IDS is the number of
ID switches (i.e., objects detected by multiple tracks), and
T is the total number of ground truth bounding boxes. Since
the Davis dataset only has annotations for the primary sub-
jects of each video, our pipeline can track correct objects
that do not have corresponding ground truth labels. Due to
this, minimizing false negatives was considered more im-
portant than minimizing false positives. In any case, where
MOTA was relatively consistent between parameters, the
total number of false negatives was used to choose parame-
ters. Parameter-specific tests for MOTA scores and the num-
ber of false negatives can be seen in Fig. 5 and Fig. 6, re-
spectively.

C. Model and Training Configuration

To ensure reproducibility, we provide detailed implementa-
tion details for all our experiments in Section 5 of the main
text.

C.1. Pretraining

Tab. 1 shows the hyperparameters used for pre-training. We
adopt 8 RTX A4500 GPUs with an effective 1024 batch size
(128 per GPU×8 GPUs).

C.2. TrackVerse Few-shot Learning

We conduct few-shot learning on the TrackVerse valida-
tion set, which contains 505 categories and 6 images per
category. We run the evaluation with the same configuration
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(a) Conf Thresh. (b) Frame Rate (c) Frame Size (d) Match Thresh.

(e) Motion Weight (f) NMS (g) IOU Low Thresh. (h) Track Thresh.

Figure 5. MOTA scores on Davis while varying parameter configurations. The chosen configuration is highlighted in red.

(a) Conf Thresh. (b) Frame Rate (c) Frame Size (d) Match Thresh.

(e) Motion Weight (f) NMS (g) IOU Low Thresh. (h) Track Thresh.

Figure 6. Number of False Negatives on Davis while varying parameter configurations. The chosen configuration is highlighted in red.

(Tab. 2) on 6 different sets of 5 training images per class and
average the final performance.

C.3. Action Recognition on SSv2

We fine-tuned the TimeSformer model, initializing the spa-
tial attention block with weights from the pre-trained model
and the temporal attention block with zeros to utilize the
learned spatial representation, as shown in Fig. 7. The de-
fault configuration details are provided in Tab. 3. All mod-
els were finetuned for 20 epochs using 8 frames per video,
SGD optimizer, weight decay of 1e−4, batch size of 16, gra-
dient accumulation set to 2, and a cosine decay learning rate
schedule. The base learning rate was set to 1.0 with 4 warm-
up epochs. To optimize the training settings, we conducted

a parameter sweep covering learning rates of 0.1, 0.5, 1.0,
and 3.0; weight decay options of 0, 0.0001, and 0.001; and
fine-tuning epochs of 10, 15, 20, and 30.

C.4. Object-Attribute Classification on MIT-States

We fine-tuned a plain CLIP model following [9], where the
image encoder was initialized with our pre-trained model,
as shown in Fig. 8. The default configuration details are
provided in Tab. 4. We conducted a parameter sweep over
weight decay of 0, 0.005, 0.05, and 0.1, drop path rate of 0,
0.1, and 0.2 to find the optimal setting.
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Table 1. Pretraining config.

Config Value

Backbone ViT-B/16
Dataset TrackVerse 1121K-CB2500

Optimizer AdamW
Warmup Updates 10,000

Epochs 209
Batch size 1024

LR Schedule Cosine Decay w/ Warmup
Base LR 1.5e-4

Weight Decay 0.2
Gradient Clip 0.5

Optimizer Momentum β1 = 0.9, β2 = 0.95
Target Encoder Momentum 0.99→ 1.0

Spatial Augmentations
RandomHorizontalFlip
RandomResizedCrop(224,(0.2,1))

Color Augmentations

RandomColorJitter(p = 0.8)
RandomGrayscale(p = 0.2)
RandomAdaptiveGaussianBlur((0,1.))
RandomSolarize(p = 0.1,)

Temporal Augmentations δ = 2

Table 2. TrackVerse few-shot learning config.

Config Value

Dataset TrackVerse Val
Optimizer SGD

Epochs 30
Batch size 128

LR Schedule Cosine Decay w/ Warmup
Base LR 0.03

Warmup Epochs 5
Weight Decay 0

Optimizer Momentum 0.9

Data Augmentations
RandomHorizontalFlip
RandomResizedCrop

Temporal Att.

Spatial Att.

MLP
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Figure 7. Fine-Tuning TimeSformer with TrackVerse Pretrained Fea-
tures on SSv2. The spatial attention block (highlighted in orange) is initial-
ized with weights from the pre-trained model, while the temporal attention
block is initialized with zeros.

Table 3. SSv2 Ft config.

Config Value

Dataset SSv2 [5]
Optimizer SGD

Epochs 20
Batch size 16

LR Schedule Cosine Decay w/ Warmup
Base LR 1.0

Warmup Epochs 4
Weight Decay 0.0001

Layer Decay 0.8
Data Augmentations RandAug(7,4,0.5,1)

Label Smoothing 0.0
Random pixel erase 0.25

Mix-Up 0.0
Cut-Mix 0.0

Path Drop 0.1
Attn Drop 0.0

Image Encoder Text Encoder

MLP MLP

Compatibility

Image Object attribute pair

TrackVerse
Pretrained Model

Figure 8. Fine-Tuning CLIP with TrackVerse Pretrained Features.
The image encoder is initialized with weights from the TrackVerse-
pretrained model to leverage learned image features. The text encoder pro-
cesses object-attribute pairs, and both encoders are connected to an MLP
layer to compute compatibility between visual and textual representations.

Table 4. MIT-States Ft config.

Config Value

Dataset MIT States [6]
Optimizer AdamW

Epochs 40
Batch size 256

LR Schedule Cosine Decay w/ Warmup
Base LR 0.000015

Warmup Epochs 20
Weight Decay 0.01

Optimizer Momentum β1 = 0.9, β2 = 0.999

Data Augmentations
RandomHorizontalFlip
RandomResizedCrop

D. Additional SSL Method Ablation

D.1. Variance-Aware Contrastive Learning

We analysis the impact of various components on the
performance of the variance-aware contrastive learning
through an ablation study. As outlined in the main text,
the most effective configuration involves running variance-
aware MoCo on a class-balanced subset and conditioning
the predictor on the spatiotemporal metadata of each crop.
The inclusion of Adaptive Gaussian blur (with a maximum
blurriness of 1) and temporal augmentations (featuring tem-
poral jittering and a δ value of 2) also significantly enhances
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Table 5. Ablation studies around the optimal congiguration. We pre-train on the 184K-CB300 subset for 125 epochs. We report nearest neighbor (NN)
accuracy (%) on LVIS-ImageNet (LVIS-IN) set, NN and few-shot learning (FSL) accuracy (%) on TrackVerse validation set, and NN ccuracy (%) on
MIT-States object classification (Obj.), attribute classification (Attr.), and object-attribute pair classification (Pair) tasks. The default configuration is marked
in blue .

(a) Class Distribution

Subset
MIT-States

LVIS-IN TrackVerse Obj. Attr. Pair
NN NN FSL NN NN NN

184K-Random 26.0 22.9 32.5 46.3 34.3 8.3
184K-CB300 27.7 26.6 36.9 48.3 34.4 8.7

(b) Temporal Augmentation

Time MIT-States
Temporal Gap LVIS-IN TrackVerse Obj. Attr. Pair

Jitter δ NN NN FSL NN NN NN

7 0 23.3 19.3 28.4 43.5 32.0 7.4
3 0 23.8 19.5 29.4 43.7 32.1 7.5
3 2 27.7 26.6 36.9 48.3 34.4 8.7
3 5 25.7 24.1 34.3 46.5 34.1 8.2

(c) Adaptive Gaussian Blur

Adaptive MIT-States
Gaussian Max LVIS-IN TrackVerse Obj. Attr. Pair

Blur Blur NN NN FSL NN NN NN

7 2 27.5 26.1 35.0 47.4 34.3 8.6
7 0 27.6 26.3 36.5 48.3 34.6 8.7
3 1 27.7 26.6 36.9 48.3 34.4 8.7
3 2 27.5 26.6 36.6 48.2 34.1 8.6

(d) View Condtion

MIT-States
View LVIS-IN TrackVerse Obj. Attr. Pair

Condition NN NN FSL NN NN NN

7 26.4 24.6 32.7 46.8 34.8 8.4
Spatial 27.4 25.1 35.4 48.2 33.9 8.6

Temporal 27.6 26.6 35.7 47.2 34.9 8.9
Spatial+Temporal 27.7 26.6 36.9 48.3 34.4 8.7

the model’s performance. To further understand the con-
tribution of each component, we conduct pre-training on
the TrackVerse 184k-cb300 subset both with and without
each element of the optimal configuration. The results of
this evaluation are presented in Tab. 5.
Class Distribution Although the full TrackVerse con-
tains a diverse range of object classes, the class distribu-
tion is highly imbalanced. Given a fixed dataset size, class
imbalance significantly reduces the dataset diversity, lead-
ing to suboptimal model performance. This effect is once
again highlighted in Tab. 5a, where pretraining on a class-
balanced subset consistently outperforms an equally sized
randomly selected subset across all tasks.
Temporal Augmentation As demonstrated in Tab. 5b, the
introduction of temporal jittering and a time gap can en-
hance the model’s performance. While a certain degree of
time gap between two views is beneficial for capturing tem-
poral variations, an excessively large gap can lead to signif-
icant differences in object appearance and increased uncer-
tainty. Also, since there is a large number of small tracks,
increasing the time gap results in less temporal jittering,
which can be detrimental to the model’s performance.
Adaptive Gaussian Blur The Random Gaussian Blur aug-
mentation applies a blur to each image, with the level
of blurriness controlled by σ ∼ U(σmin, σmax). Typi-
cally, σmin = 0 and σmax = 2 [3]. However, since
the TrackVerse dataset contains tracks of various sizes,
smaller tracks will naturally be depicted with less detail
when upscaled to the model’s input resolution of 224.
Therefore, we introduce the Adaptive Gaussian Blur aug-
mentation. This method dynamically adjusts the level of
Gaussian blur according to the subsampling factor of each
track. The subsampling factor is calculated as

s =

√
wtrack × htrack

wvideo × hvideo
, (2)

The Adaptive Gaussian Blur samples the adjusted Gaussian
kernel as σ = 1.5

s × U [0, σmax], where the coefficient 1.5 is
the average factor across the dataset.

Tab. 5c compares the effects of random Gaussian Blur,
no blur, and the adaptive Gaussian Blur with varying σhigh
values. Interestingly, omitting Gaussian Blur yields better
performance than the basic random Gaussian Blur. How-
ever, the Adaptive Gaussian Blur, when applied with a less
intense blurriness level, delivers the optimal performance.
These findings suggest that video dataset pretraining bene-
fits from a milder Gaussian Blur compared to static image
training. Excessive blurring tends to obscure critical details
necessary for effective learning, especially when the origi-
nal videos already contain motion blur. Therefore, adjusting
the blurriness level to a lower intensity aligns better with the
intrinsic properties of the TrackVerse, thereby enhancing
the overall model effectiveness.
View Condition As illustrated in Tab. 5d, the applica-
tion of variance-aware prediction with even a single source
of view condition can significantly enhance model perfor-
mance across all tasks, outperforming the traditional view-
invariance approach. The independent utilization of either
spatial or temporal conditions can provide a substantial per-
formance boost, with the temporal condition proving to
be more effective than the spatial condition alone. How-
ever, the combination of both spatial and temporal condi-
tions yields the most optimal performance in the majority
of tasks.

Finally, we conducted a series of incremental ablation
studies to examine the impact of dataset curation and pre-
training configurations on representation performance in
Tab. 6. All models are trained for 114.6K iterations. The re-
sults are summarized. The notation ‘+” indicates that each
row introduces only one additional component relative to
the previous configuration.
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Table 6. Downstream performance across various dataset and pretraining configurations. All models were trained on a TrackVerse subset of size
392k for 300 epochs and evaluated on a range of downstream tasks.

Downstream Task→ LVIS-IN TrackVerse SSv2 MIT-States
Pretrain Config ↓ NN NN FSL Ft Obj NN Attr NN Pair NN Pair Ft HM

392K-Random
1 MoCo-v3 w/ Static frames 30.5 26.8 39.7 56.0 48.8 33.8 9.0 39.0

392K-CB1000
2 MoCo-v3 w/ Static frames 34.6 33.8 46.8 55.1 50.9 37.8 9.7 40.3
3 + Temporal jitter 35.3 34.4 48.8 54.8 51.4 37.8 10.1 39.6
4 + Time gap (δ = 2) 36.7 36.9 49.7 55.7 52.4 38.6 10.4 39.7
5 + Adaptive Gaussian blur 37.3 37.8 51.9 57.3 53.3 38.8 10.6 41.1
6 + Aug. aware prediction 38.4 39.9 53.1 57.6 54.7 39.3 10.9 41.1

Pretraining LVIS-IN TrackVerse SSv2 MIT-States Davis-2017
Data (Method) NN NN FSL Ft Pair Ft. J&Fm

Static Frames (MAE) 22.1 20.0 28.3 46.5 35.5 58.4
Tracks (MAE w/ Temporal Context) 24.3 22.3 31.1 54.2 37.5 62.8

Table 7. MAE Pretraining on TrackVerse: Static Frames vs. Temporally-
Contextualized Tracks

Figure 9. MAE w/ Temporal Context

D.2. Additional SSL methods

While our experiments focus on MoCo due to its relia-
bility, we believe the findings are indicative of other con-
trastive methods as well. We also conducted additional ex-
periments with Masked Image Modeling (MIM) to demon-
strate TrackVerse’s effectiveness with other SSL methods
(beyond contrastive). To incorporate temporal augmenta-
tion, we modified the standard MAE (Fig. 9) by sampling
two frames 2s apart, applying the same random mask, en-
coding them separately, and jointly reconstructing both.
Trained on the 0.4M-CB1000 subset for 300 epochs, the
results in Tab. 7 show that TrackVerse also benefits MIM-
based approaches, supporting its broader applicability in
different SSL methods.

E. Datasheet

In this section, we provide a detailed description of the
dataset following the “datasheet for datasets” [4].

E.1. Motivation

For what purpose was the dataset created?
The TrackVerse dataset was created for self-supervised

representation learning of common objects within their nat-

ural environments. This focus is designed to advance the
understanding and development of algorithms capable of
learning from dynamic and varied real-world conditions
without the need for labeled data. The dataset supports the
exploration of how objects change over time and interact
with their surroundings, providing rich data that helps in de-
veloping more sophisticated and generalizable video-based
SSL techniques that go beyond what is possible with static
image data. The validation set is designed to evaluate the
representations learned on TrackVerse in-domain.

E.2. Composition

What do the instances that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)?

The instances in the TrackVerse dataset represent ob-
ject tracks extracted from YouTube videos. These tracks are
centered around individual objects, with durations ranging
from 3 to 30 seconds. Each object track is a sequence cap-
turing a specific object’s motion and changes over time, pro-
viding a focused view that supports detailed analysis and
learning about the object’s dynamics within its natural envi-
ronment. Examples from TrackVerse can be seen in Fig. 2.

How many instances are there in total (of each type,
if appropriate)?

The TrackVerse dataset comprises a total of 10.78 mil-
lion object tracks in its full, uncurated form. The curated
1121K-CB2500 subset contains 1,121,000 object tracks.
The validation set contains 4188 object tracks, with 698 ob-
ject classes (6 tracks per class).

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a
larger set?

The TrackVerse dataset contains all possible tracks that
were found using a combination of the DETIC detector and
the ByteTrack tracker, deployed using the LVIS object vo-
cabulary. The proposed 1121K-CB2500 subset contains a
subset that has been class-balanced for improved diversity
within a fixed-size dataset.

What data does each instance consist of?
The TrackVerse dataset set is distributed as a GZIP

compressed JSONL file with one instance per line. Each
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instance is stored in JSON format, containing the following
fields:
• track id: unique track identifier
• video size: [height, width] of the video from which

this track was extracted
• track ts: [start time, end time] timestamps (seconds)

in the original video for the first and last frame in the
track

• top10 lbl: Class ids of the top-10 predicted classes for
the track, based on label score

• top10 desc: names of the top-10 predicted classes for
the track, based on logits

• top10 cls: [[top-10 logits mean], [top-10 logits std]]
A list of the mean values of the classification logits for
the top 10 classes, and a list of the standard deviations
for these logits

• top10 wcls: [[top-10 weighted logits mean], [top-10
weighted logits std]] A list of the mean scores for each of
the top 10 weighted scores (weighted logits by the object
track score), and a list of the standard deviations of these
scores.

• frame ts: timestamps (seconds) in the original video
for each frame in the track

• frame bboxes: list of bounding box coordinates
[top left x, top left y, bottom right x, bottom right y] of
the object for each frame in the track.

• yid: YouFube ID for the video from which this track was
extracted

• mp4 filename: Filename of the track produced by
running the track extraction pipeline.
Is there a label or target associated with each in-

stance?
While the dataset set is proposed for the purpose of un-

supervised representation learning, every instance in the
TrackVerse dataset has been automatically categorized by
the DETIC object detector. We further manually verified the
labels of instances in a smaller validation set to ensure their
correctness and reliability.

Is any information missing from individual in-
stances?

No.
Are relationships between individual instances made

explicit (e.g., users’ movie ratings, social network
links)?

Yes, the spatiotemporal relationships between individual
tracks in the TrackVerse dataset (e.g., which tracks co-
occurred in time) can be inferred from the temporal and
spatial information provided with the dataset metadata. For
each object track, we include timestamps and bounding
boxes that detail the specific spatial location and duration
of the object within the original video. This information es-
tablishes a clear contextual link between each track and its

origin, allowing users to know not only the object’s char-
acteristics but also its interactions with other objects within
the natural video environment.

Are there recommended data splits (e.g., training, de-
velopment/validation, testing)?

Yes, the full TrackVerse dataset can be curated into
subsets of varying scales by capping the high-frequency
classes at 100, 300, 500, 1000, and 2500 tracks per class, re-
sulting in four curated subsets containing 82K, 184K, 259K,
392K and 1.12M tracks, respectively. For pretraining pur-
poses, we recommend using the largest subset, the 1121K-
CB2500, which offers a comprehensive range of data while
maintaining class balance. Additionally, we provide a vali-
dation set that includes 4188 object tracks across 698 object
classes, with each class represented by 6 tracks. The labels
for these validation tracks were manually verified to ensure
accuracy. We ensure that the validation set is disjoint from
the training set to prevent data leakage and to provide a re-
liable benchmark for evaluating model performance.

Are there any errors, sources of noise, or redundan-
cies in the dataset?

Yes, there are potential errors in the TrackVerse dataset
stemming from the labels predicted by the DETIC open-
vocabulary object detector, which are not 100% accurate.
Further analysis of the data collection pipeline and fail-
ure modes are given in this supplement. Despite this, the
primary purpose of TrackVerse is for video-based self-
supervised learning, where labels are not utilized during
the training process. The annotations primarily serve to
enhance the dataset’s diversity, ensuring it is more class-
balanced and object-centric.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources (e.g., websites, tweets,
other datasets)?

The TrackVerse dataset is designed to be self-
contained in terms of its primary data structure, but it relies
on external resources for the video content itself. We plan to
release only the URLs of the videos along with JSONL files
containing metadata, instead of the videos directly. This ap-
proach is taken to respect user privacy, allowing the origi-
nal uploaders the flexibility to delete or modify their videos.
Users of the dataset should be aware that the availability and
constancy of the video content linked via URLs cannot be
guaranteed over time due to potential changes made by the
video owners.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor-patient confidentiality, data that
includes the content of individuals’ non-public commu-
nications)?

No.
Does the dataset contain data that, if viewed directly,
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might be offensive, insulting, threatening, or might oth-
erwise cause anxiety?

No.
Does the dataset identify any sub-populations (e.g.,

by age, or gender)?
Not explicitly.
Is it possible to identify individuals (that is, one or

more natural persons), either directly or indirectly (that
is, in combination with other data) from the dataset?

Yes, it is theoretically possible to identify individuals
from the dataset as some videos may contain identifiable in-
formation like faces or license plates. To mitigate this risk,
we have implemented measures to anonymize such infor-
mation by using the Deface tool to blur all faces and license
plates visible in the videos. Additionally, it is important to
note that all videos included in the dataset are publicly avail-
able and were obtained in accordance with the Terms of
Service agreed upon by users when uploading content to
YouTube. These steps are part of our commitment to ensur-
ing privacy and adhering to ethical standards in the use of
publicly sourced video data.

Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals race or
ethnic origins, sexual orientations, religious beliefs, po-
litical opinions or union memberships, or locations; fi-
nancial or health data; biometric or genetic data; forms
of government identification, such as social security
numbers; criminal history)?

The dataset primarily consists of video tracks from pub-
licly available YouTube videos, which may inadvertently
contain data that could be considered sensitive. This in-
cludes potential visibility of individuals’ racial or ethnic
origins, locations, or other personal characteristics due to
the nature of the video content. However, no explicit collec-
tion of sensitive data such as sexual orientation, religious
beliefs, political opinions, financial or health data, biomet-
ric or genetic data, government identification numbers, or
criminal history was intended or conducted in the creation
of the dataset. We employ measures such as blurring faces
and license plates to minimize the risk of revealing identi-
fiable information. Nonetheless, given the public source of
the videos, residual risks of exposure to sensitive data may
persist despite these precautions.

E.3. Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw text,
movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age or
language)?

We download the video data from YouTube. The videos

are public and directly observable on YouTube.
What mechanisms or procedures were used to collect

the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)?

We provide a detailed dataset acquisition and track-
ing pipeline in the main paper. To summarize, we use the
YouTube API and the youtube-dl library to download the
original videos, PySceneDetect [2] to split the video into
scene clips, a cartoon classifier and an aesthetics predic-
tor to remove cartoons and low aesthetics videos, and DE-
TIC [10] and ByteTrack [8] to detect and track objects in
the video. We also cap the high-frequency classes to create
more class-balanced subsets and manually verify the labels
for the validation set.

If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)?

Each subset is a curated sample from the full
TrackVerse dataset. The curation involves capping the
high-frequency classes at predetermined thresholds—100,
300, 500, and 1000 tracks per class, resulting in four curated
subsets containing 82K, 184K, 259K, and 392K tracks, re-
spectively, to address and mitigate the issues of class imbal-
ance often found in natural video dataset. Within each class,
tracks are deterministically sampled based on the highest
logit scores.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowd-workers
paid)?

The authors of this paper were involved in the data col-
lection process. No crowdworkers or contractors were in-
volved.

Over what timeframe was the data collected?
The data was collected over a period from January 2024

to May 2024. However, the YouTube videos included in the
dataset may date back much earlier than this collection pe-
riod.

Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other
sources (e.g., websites)?

We collect the data from YouTube, which is a public plat-
form.

Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection im-
pact analysis) been conducted?

No formal analysis of the potential impact of the dataset
on data subjects, such as a data protection impact analysis,
has been conducted. Given that the dataset primarily com-
prises publicly available YouTube videos, the primary fo-
cus has been on adhering to general data privacy and us-
age guidelines, such as anonymizing identifiable informa-
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tion where possible.
Is the software used to preprocess/clean/label the in-

stances available?

E.4. Uses

Has the dataset been used for any tasks already?
No. The dataset is newly introduced in this paper.
What (other) tasks could the dataset be used for?
The evaluation set with verified labels can be used to as-

sess video object recognition.
Is there anything about the composition of the

dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses?

The dataset was collected for studying video-based self-
supervised learning of object representations as demon-
strated in the main paper. While spatial relationships be-
tween objects are preserved in the dataset, they have not
been explored in this work. Future works may explore the
spatial relationships between objects in the dataset.

Are there tasks for which the dataset should not be
used?

No.

E.5. Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created?

Yes.
How will the dataset be distributed (e.g., tarball on

website, API, GitHub)?
We distribute all the extracted track data (class labels,

bounding box, timesteps, links to the original YouTube
videos etc) as JSONL files and the code used for creating
the dataset through GitHub.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or un- der
applicable terms of use (ToU)?

Yes, under the permissible MIT license for research-
based use only.

Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?

No.
Do any export controls or other regulatory restric-

tions apply to the dataset or to individual instances?
No.

E.6. Maintenance

Is there an erratum?
No, but it’s important to note two issues: (1) the provided

categories are DETIC predictions (not 100% accurate), and

(2) some YouTube videos may be removed or made private
by the owner.

Will the dataset be updated (e.g., to correct labeling
errors, add new instances, or delete instances)?

Yes, the dataset will be actively maintained and updated
as needed. Updates to correct labeling errors, add new in-
stances, or delete instances will be announced on the main
webpage.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were the individuals in question told that
their data would be retained for a fixed period and then
deleted)?

No. We try to blur out all faces and license plates appear-
ing in the video using Deface [1].

Will older versions of the dataset continue to be sup-
ported/hosted/maintained?

Yes, older versions of the dataset will continue to be
hosted and maintained.

If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do so?

Yes, we will provide detailed instructions. Each submis-
sion will be carefully reviewed through GitHub’s Pull Re-
quest system before merging it with the main dataset.
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