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Limitations and Broader Impacts
Our tokenizer contributes to structured visual representation
learning, which may benefit image compression, retrieval,
and generation. However, like other generative models, it
could also be misused for deepfake creation, misinformation,
or automated content manipulation. Ensuring responsible
use and implementing safeguards remains an important con-
sideration for future research. SEMANTICIST also presents
several limitations, for example, we employ a diffusion-
based decoder, but alternative generative models like flow
matching or consistency models could potentially improve
efficiency. Additionally, our framework enforces a PCA-like
structure, further refinements, such as adaptive tokenization
or hierarchical models, could enhance flexibility.

A. Proof for PCA-like structure
The conditional denoising diffusion model is using a neu-
ral network ϵθ(xt, z, t) to approximated the score function
▽xt

ln q(xt|x0) which guides the transition from a noised
image xt to the clean image x0. For the conditional diffu-
sion decoder in SEMANTICIST, the score function can be
decomposed as:

ϵθ(xt, z1, . . . ,zk) = ϵθ(xt, ∅) +
k∑

i=1

γi∆ϵθ(xt, zi) ,

where ∅ is the null condition, γi is the guidance scale, and
∆ϵθ(xt, zi) = ϵθ(xt, z1, . . . ,zi) − ϵθ(xt, z1, . . . ,zi−1)
represents the increment contribution of the concept token
condition zi to the score function. Thus, we can rewrite
the diffusion training objective with k conditions with the
following:

Lk = E
[∥∥∥ϵ− (

ϵθ(xt, ∅) +
k∑

i=1

γi∆ϵθ(xt, zi)
)∥∥∥2] .

Orthogonality between contribution of concept tokens.
At the optimal convergence, the gradient of Lk w.r.t
∆ϵθ(xt, zi) is zero, thus give us:

∂Lk

∂∆ϵθ(xt, zi)
= E

[(
ϵ− ϵθ(xt, ∅)−

k∑
j=1

γj∆ϵθ(xt, zj)
)
γi

]
= 0 .

Since model is at convergence, the residual term ϵ −
ϵθ(xt, ∅)−

∑k
j=1 γj∆ϵθ(xt, zj) can not be further reduced

by making further changes to the adjustment from the i-th
concept token ∆ϵθ(xt, zj). In other words, the residual
term and all active conditions ∆ϵθ(xt, zj) are orthogonal
to each other. Next, we can use induction to prove that at
convergence, all ∆ϵθ(xt, zj) terms are orthogonal to each
other similar to PCA. For the case of k = 1, we only use one
concept token to condition the model, thus we can have:

E [(ϵ− ϵθ(xt, ∅)− γ1∆ϵθ(xt, z1))∆ϵθ(xt, z1)] = 0 .

For the case of k = 2, for (i = 1, 2), we have:

E
[(

ϵ− ϵθ(xt, ∅)−
2∑

j=1

γj∆ϵθ(xt, zj)
)
∆ϵθ(xt, zi)

]
= 0 .

By substituting the k = 1 case into this, it can be seen
that E

[
∆ϵθ(xt, z1)

⊤∆ϵθ(xt, z2)
]
= 0. Assuming this
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orthogonality holds for the first k − 1 concept tokens:
E
[
∆ϵθ(xt, zi)

⊤∆ϵθ(xt, zj)
]

= 0 ∀i, j < k, i ̸= j.
Then for i < k, by substituting

ϵ− ϵθ(xt, ∅) =
k−1∑
j=1

γj∆ϵθ(xt, zj) + γk∆ϵθ(xt, zk) ,

we can have:

E
[
∆ϵθ(xt, zi)

⊤∆ϵθ(xt, zk)
]
= 0 .

Thus, the orthogonality propagates to all pairs (zi, zk) for
i < k. By induction, we have orthogonality between all
pairs of concept tokens.

Variance Explained Hierarchy. Assuming the true noise
ϵ can be reconstructed using the conditional model, we have:

ϵ ≈ ϵθ(xt, ∅) +
k∑

i=1

γi∆ϵθ(xt, zi) + residual .

Given the orthogonality of ∆ϵθ(xt, zi) we have proven ear-
lier, the total variance can be decomposed as:

Var(ϵ) =
k∑

i=1

Var(γi∆ϵ(xt, zi)) + Var(residual) .

Let λi = Var(γi∆ϵθ(xt, zi)), representing the variance
explained by concept token condition zi. Our dropout design
would have the training objective forces:

λ1 ≥ λ2 ≥ · · · ≥ λk ,

as each concept token zi is trained to explain the maxi-
mal residual variance after accounting for concept tokens
z1, . . . ,zi−1.

Thus, combining the orthogonality and the variance decay,
SEMANTICIST provably grounds the emergence of a PCA-
like hierarchical structure in the learned concept tokens.
Providing a simple, effective, and explainable architecture
for visual tokenization.

B. Additional Related Work
B.1. Concurrent Related Work
Concurrent work [1] introduces a 1D tokenizer that focuses
on adaptive-length tokenization by resampling sequences of
1D tokens from pre-trained 2D VAE tokens. In contrast, our
encoder builds on raw RGB images. More importantly, our
approach is motivated by a fundamentally different objective
— reintroducing a PCA-like structure into visual tokeniza-
tion to enforce a structured, hierarchical latent representation.
Furthermore, our tokenizer is continuous rather than discrete,
setting it apart from [1] and allowing it to better capture the

variance-decaying properties inherent to PCA. Additionally,
we identify and resolve the semantic-spectrum coupling ef-
fect, a key limitation in existing visual tokenization methods
that have not been previously addressed.

B.2. Related Work on Human Perception
Human perception of visual stimuli has been shown to
follow the global precedence effect [34], where the global
information of the scene is processed before the local in-
formation. In [15], controlled experiments of presentation
time on human perception of visual scenes have further con-
firmed the global precedence effect, where less information
(presentation time) is needed to access the non-semantic,
sensory-related information of the scene compared to the
semantically meaningful, object- or scene-related informa-
tion. Similar results have been reported in [3], where sensory
attributes are more likely to be processed when the scene
is blurred. Moreover, [35] has suggested that reliable struc-
tural information can be quickly extracted based on coarse
spatial scale information. These results suggest that human
perception of visual stimuli is hierarchical, where the global
information of the scene is processed before the local infor-
mation. As we have shown in the main paper, SEMANTICIST
can naturally emerge a similar hierarchical structure in the
token sequence, where the first few tokens encode the global
information of the scene and the following tokens encode the
local information of the scene. This hierarchical structure
is provably PCA-like, similar to the hierarchical nature of
human perception of visual stimuli.

B.3. Related Work on Diffusion-Based Tokenizers
The usage of a diffusion-based decoder has been explored
by several works [7, 17, 65]. Zhao et al. [65] proposed
the usage of a diffusion-based decoder as a paradigm shift
from single-step reconstruction of previous tokenizers to the
diffusion-based iterative refinement process. Chen et al. [7]
further scale this idea on more modern DiT [37] architecture
and describe the scaling law for such diffusion-based tok-
enizers. Ge et al. [17] applied this idea to a video tokenizer,
enabling better reconstruction and understanding of video
content. However, these previous works overlook the benefit
of the diffusion-based decoder in that it can disentangle the
semantic content from the spectral information. Addition-
ally, these works still apply the 2D grid-based structure for
encoding the image without considering the latent structure
of the token space.

C. Additional Implementation Details
C.1. Semanticist Autoencoder
Model architecture. As shown in Fig. 3, the SEMANTI-
CIST tokenizer follows the diffusion autoencoder [28, 38]
paradigm: a visual encoder takes RGB images as input and



encodes them into latent embeddings to condition a diffusion
model for reconstruction. In our case, the visual encoder
is a ViT-B/16 [12] with a sequence of concept tokens con-
catenated with image patches as input. The concept tokens
have full attention with patch tokens, but are causal to each
other. Before being fed to the decoder, the concept tokens
also go through a linear projector, and are then normalized
by their mean and variance. To stabilize training, we also
apply drop path with a probability of 0.1 to the ViT. For
the DiT decoder, we concatenate the patch tokens (condi-
tion) with noisy patches as input, and the timesteps are still
incorporated via AdaLN following common practice [37].

Nested classifier-free guidance (CFG). For the DiT de-
coder, we randomly initialize k (number of concept tokens)
learnable null-conditioning tokens. During each training
iteration, we uniformly sample a concept token index k′,
and corresponding null tokens replace all tokens with larger
indices. To facilitate the learning of the encoder, we do not
enable nested CFG in the first 50 training epochs. During in-
ference, CFG can be applied to concept tokens independently
following the standard practice [37].

Training. We follow [28] for training details of the to-
kenizer. Specifically, the model is trained using the
AdamW [31] optimizer on ImageNet [8] for 400 epochs
with a batch size of 2048. The base learning rate is 2.5e-5,
which is scaled by lr = lrbase×batch size/256. The learning
rate is also warmed up linearly during the first 100 epochs,
and then gradually decayed following the cosine schedule.
No weight decay is applied, and β1 and β2 of AdamW are set
to 0.9 and 0.95. During training, the image is resized so that
the smaller side is of length 256, and then randomly flipped
and cropped to 256×256. We also apply a gradient clipping
of 3.0 to stabilize training. The parameters of the model are
maintained using exponential moving average (EMA) with
a momentum of 0.999.

Inference. Because of the nature of the PCA structure, it is
possible to obtain reasonable reconstruction results with only
the first few concept tokens. In implementation, we achieve
this by padding missing tokens with their corresponding null
conditioning tokens and then feeding the full sequence to the
DiT decoder.

C.2. Autoregressive Modeling
Model architecture. The ϵLlamaGen roughly follows the
LlamaGen architecture with the only change of using a dif-
fusion MLP as the prediction head instead of a softmax
head. To perform the classifier-free-guidance, we use one
[CLS] token to guide the generation process of ϵLlamaGen.
As certain configurations of SEMANTICIST can yield high-
dimensional tokens, we made a few adjustments to the model

architecture of ϵLlamaGen to allow it to learn with high-
dimensional tokens. Specifically, we use a 12-layer MLP
with each layer having 1536 hidden neurons as the predic-
tion head and use the stochastic interpolant formulation [32]
to train the diffusion MLP. The classifier-free guidance is
also slightly modified: we concatenate the [CLS] token
with the input to the diffusion MLP along the feature axis
and then project back to the original feature dimension to
feed into the diffusion MLP. These changes allow us to
train auto-regressive models on high-dimensional (e.g., 256-
dimensional) tokens with improved stability compared to the
original version proposed in [29]. However, we expect future
research to drastically simplify this model architecture.

Training. The ϵLlamaGen is trained for 400 epochs with
cached latents generated by pretrained SEMANTICIST on
the ImageNet dataset with TenCrop and random horizontal
flipping augmentations. We use a batch size of 2048, and
apply a 100-epoch warmup for the base learning rate of
1e-4, which is scaled similarly as the SEMANTICIST w.r.t.
the batch size. After warmup, the learning rate is fixed.
Weight decay of 0.05 and gradient clipping of 1.0 are applied.
In our experiments, we find that later concept tokens have
diminishing returns or are even harmful for ϵLlamaGen, thus
only train ϵLlamaGen with the first few tokens. Specifically,
the ϵLlamaGen-L model is trained with 32 concept tokens.

Inference. In the inference stage, we use the same lin-
ear classifier-free guidance schedule as MAR [29] and
MUSE [5]. The schedule tunes down the guidance scale
of small-indexed tokens to improve the diversity of gen-
erated samples, thus being more friendly for gFID. When
reporting gFID, we disable CFG for SEMANTICIST’s DiT
decoder, tune the guidance scale of the autoregressive model,
and report the best performance.

C.3. Linear Probing
We utilized the sklearn library to perform the linear prob-
ing experiments, the encoder weights are frozen, and we
encode each image to its token representation. The linear
classifier is learned on the token space without applying any
data augmentation.

D. Additional Experiment Results
D.1. Human Perception Test
We are interested in understanding whether the tokens
learned by SEMANTICIST follow a human-like perception
effect, namely the global precedence effect [34] where the
global shape and semantics are picked up within a very short
period of exposure. Thus, we designed a human perception
test to evaluate whether SEMANTICIST generates tokens that
closely follow human perception. Specifically, we generate
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Figure 8. The preference score from the human perception test, all
models and test configurations obtained a score close to 0.5, indi-
cating SEMANTICIST can encode images as effectively as human
language does.

images by only reconstructing from the first two tokens from
SEMANTICIST. Distractor images are also generated by first
captioning the image with Qwen2.5VL [2] and then generate
the image with a stable-diffusion model [45]. Following
the setup of [15], we only reveal the generated images and
the distractors by a very short reveal time, and then ask the
participants to choose which images more closely align with
the original image. For evaluation, we give the participant’s
preference to distractor image zero points, the preference
to the generated image one point, and in the case of a tie,
we give 0.5 points. Fig. 8 presents the averaged preference
score with different token dimensions and reveal time. SE-
MANTICIST is able to obtain a score close to 0.5 under all
cases, indicating that SEMANTICIST can encode the image’s
global semantic content close to how state-of-the-art vision
language models [2] encode the image in language space. A
web-based human perception test interface is provided along
with this appendix.

D.2. Zero-Shot CLIP on Reconstructed Images
We also study the property of the SEMANTICIST latent space
by reconstructing from it. Fig. 9 demonstrate the zero-shot
accuracy of a pretrained CLIP [40] model on the imagenet
validation set reconstructed by SEMANTICIST. For all model
variants, the zero-shot performance improves with the num-
ber of tokens, with models using more dimensions per token
achieving better performance with a smaller number of to-
kens, indicating that with more dimensions, SEMANTICIST
is able to learn the semantic content with fewer tokens. Fig. 6
provides the rFID score on the ImageNet validation set with a
varying number of tokens, similar conclusions can be drawn.
Additionally, Fig. 6 also provides the scaling behavior of
SEMANTICIST, we can observe that SEMANTICIST not only
enjoys a structured latent space, but also demonstrates a
promising scaling.
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Figure 9. CLIP zero-shot accuracy on reconstructed images.

Figure 10. Frequency-power spectra of TiTok decomposed with
PCA at feature dimensions. The learning of semantic contents and
spectral information is coupled.

D.3. Semantic Spectrum Coupling Effect Results
In Fig. 10, we present the power frequency plot of perform-
ing PCA to decompose the latent token space of TiTok [62].
A similar effect as the PCA decomposition on VQ-VAE [50]
and the first k token decomposition on TiTok [62] is ob-
served. This result further demonstrates that the latent space
of TiTok [62] entangles the semantic contents and the spec-
tral information.

D.4. Additional Ablation Study
In Fig. 12, we show the results of SEMANTICIST with
d64×64 tokens trained with or without REPA [63] eval-
uated by reconstruction FID on ImageNet 50K validation
set. Despite the performance with full tokens being similar,
adding REPA significantly improves the contribution of each
(especially the first few) tokens. This naturally fits our need
for PCA-like structure and is thus adopted as the default.
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Figure 11. Reconstruction performance of different encoder configurations on ImageNet val 50K benchmark. A larger number of lower-
dimensional tokens is more friendly for reconstruction tasks.
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Figure 12. Ablation on the use of REPA (with d64×64 concept
tokens, DiT-L/2 decoder, see qualitative results in Fig. 16). REPA
improves the information density in preceding tokens.

We also compared the reconstruction performance of dif-
ferent concept token dimensions. We fix the product be-
tween the number of tokens and the dimension per token
to be 4096, and investigate 256-dimensional (d256×16),
128-dimensional (d128×32), 64-dimensional (d64×64), and
16-dimensional (d16×256) tokens. As shown in Fig. 11,
all configurations can learn ordered representations, with
higher-dimensional ones containing more information per
token. However, lower-dimensional tokens are more friendly
for reconstruction tasks as they achieve better rFID.

D.5. Qualitative Results
In Fig. 13, reconstruction results from using different num-
bers of token dimensions are presented. As the dimension
for one token becomes large, more semantic content can be
encoded into it, thus allowing SEMANTICIST to generate
faithful reconstructions of the original image.

In Fig. 14, the reconstructed results for different scaled
DiT decoders are presented. These models are trained with
the same dimension for the tokens that are 16-dimensional.

We can see that as the model scales up, the reconstructed
images with fewer tokens become more and more realistic
and appealing.

Fig. 15 shows the reconstruction of the same SEMANTI-
CIST tokenizer with different CFG guidance scales at infer-
ence time (CFG=1.0 indicates not applying CFG). It can be
seen that the guidance scale has a very strong correlation
with the aesthetics of generated images.

Fig. 16 presents qualitative results with or without the
usage of REPA [63]. It is clear that the usage of REPA did
not visually improve the final reconstruction by much, yet
with fewer tokens, the model with REPA demonstrates more
faithful semantic details with the original image.

Fig. 17 demonstrates the reconstruction results of more
randomly sampled images, and Fig. 18 illustrates more inter-
mediate results of auto-regressive image generation.



Figure 13. Qualitative results of different token dimensions. Higher-dimensional tokens encode more information, and lower-dimensional
tokens achieve clearer semantic decoupling and better reconstruction.

Figure 14. Qualitative results of different DiT decoder scales (DiT-B/2, DiT-L/2, and DiT-XL/2) with d16×256 tokens. The quality of
images generated with fewer tokens improves consistently as the decoder scales up.



Figure 15. Qualitative results of different CFG guidance scales for DiT decoder, which clearly controls image aesthetics.

Figure 16. Qualitative results on effects of REPA (with d64×64 concept tokens). Instead of improving final reconstruction much, the benefit
of REPA is mainly attributed to more faithful semantics in intermediate results.



Figure 17. More reconstruction results of SEMANTICIST autoencoder (with d16×256 concepts tokens and DiT-XL/2 decoder).



Figure 18. More visualization of intermediate results of auto-regressive image generation.


