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A. Appendix
A.1. On the Faithfulness of B-cos Explanations
B-cos modles are piece-wise linear models that allows to
summarize each input as an input-dependent linear trans-
form f(x) = W1→L(x)x, derived in Eq. 1. Explanations
are computed in terms of the weight matrix W1→L(x) by
multiplying each feature with its matrix weight ϕ(x)i =
[W1→L]

T
j ⊙ x](ch,i,j). To show that computing explana-

tions for a forward pass is faithful (i.e., satisfies below six
axioms introduced by Sundararajan et al. [30]), we need to
show that they hold considering the transformation matrix
W1→L(x). While W1→L(x) is indeed input-dependent, it
is effectively fixed during the computation of the explana-
tion for its specific input x. This is because the explana-
tions ϕ(f,X) aim to attribute the output f(x) to the input
features of x using the weights at that point. Therefore, we
assume a fixed W1→L(x) when explaining the forward pass
of an input x, and acknowledge that while W1→L(x) varies
across different inputs, it remains constant within the con-
text of computing local explanations ϕ(f, x) for a particular
x. In addition, we consider the case of single-class predic-
tion, where the weight matrix simplifies to a single-column
form (W1→L(X) ∈ R) for in input vector X ∈ R. This
allows us to focus on the core properties of the explanation
mechanism without loss of generality since explaining the
prediction of a class in the multiclass setting is analogous
to explaining its corresponding column vector of the matrix
W1→L(x).

We abbreviate W1→L(x) with W (X) for ease of no-
tation in the following. Let SIC be defined as f(X) =
W (X) · X and its contributions similarily by ϕ(f,X) =
W (X) ⊙ X = (W (X)1 × X1, . . . ,W (X)N × XN ) (re-
mark that · denotes the scalar product and ⊙ the element-
wise multiplication, × the multiplication of real numbers).

Now, we reformulate f(X):

f(X) = W (X) ·X =

N∑
i=1

W (X)i ×Xi =

N∑
i=1

ϕ(f,X)i.

(2)

Completeness: The sum of feature attributions should
add up to the model output.

This follows trivially from the reformulation in Eq.2.

Sensitivity: If changing only one feature’s value changes
the prediction of the model, this feature’s attribution should
be non-zero.

We reformulate: f(X) =
∑N

j=1 ϕ(f,X)j = ϕ(f,X)i+∑N
j ̸=i ϕ(f,X)j .
Modifying X only in i, denoted by X̂ , and f(X) ̸=

f(X̂) yields:

f(X) = ϕ(f,X)i +
∑N

j ̸=i ϕ(f,X)j ̸= f(X̂) =

ϕ(f, X̂)i +
∑N

j ̸=i ϕ(f,X)j .

and allows to substitute
∑N

j ̸=i ϕ(f,X)j .
=⇒ ϕ(f,X)i ̸= ϕ(f, X̂)i, which means that at least

one of the two attributions in non-zero.

Implementation Invariance If two models are function-
ally equivalent, i.e. the outputs are equal for all inputs, de-
spite having different implementations, their contributions
should always be identical.

Let f1, f2 be implementations.
Then: f1 = W1(X) · X , f2 = W2(X) · X, ∀X =⇒

W1(X) = W2(X), ∀X .
It follows that W1(X) ⊙ X = W2(X) ⊙ X, ∀X =⇒

ϕ(f1, X) = ϕ(f2, X), ∀X .

Dummy If a model f does not depend on some feature
Xi, its attribution should always be zero.

If f(X) is does not depend on some feature Xi, it fol-
lows that W (X)i ×Xi = 0, ∀Xi ∈ R

=⇒ W (X)i = 0 ∀, Xi ∈ R
=⇒ ϕ(f,X)i = 0, ∀Xi ∈ R.

Linearity If the output of a model is a linear combina-
tion of two models, the attribution of the combined model
should be the weighted sum of the contributions of the orig-
inal models.

We need to show that f(X) = αf1(X) + βf2(X) =⇒
ϕ(f,X) = αϕ(f1, X) + βϕ(f2, X).

f(X) = αf1(X) + βf2(X) = α(
∑N

i=1 W1(X)i ×
Xi) + β(

∑N
i=1 W2(X)i × Xi) = α(

∑N
i=1 ϕ(f1, X)i) +

β(
∑N

i=1 ϕ(f2, X)i) = αϕ(f1, X) + βϕ(f2, X).

Symmetry-Preserving If swapping two features does not
change the model output for all possible values, they should
have identical attributions.

Let Xi, Xj be two features.
If swapping the two does not change the model output

for all possible values, it follows that
W (X)i ×Xi = W (X)j ×Xj , ∀Xi, Xj ∈ R
=⇒ ϕ(f,X)i = ϕ(f,X)j , ∀Xi, Xj ∈ R.

A.2. On the Faithfulness of support vectors
On a theoretical level, the global explanations are the expla-
nations of an intermediate B-cos neuron. Thus, they satisfy
the above axioms as well and can be interpreted as the in-
formation encoded in the respective support vector.

When providing local explanations, we view support
vectors as the weights of a B-cos linear transform. Hence,
computing the explanation of the prediction of the class in
terms of the output yields the input features compressed in



any of the support vectors; and the log-probability scores
of each support vector indicate to which extend each was
found.

Justification for ReLU in SIC In contrast to other func-
tions that could be used to implement ⊕, the ReLU activa-
tion does not alter the range of the input to potentially huge
or tiny numbers like, e.g. the exponential. However, ReLU
activations are commonly scrutinized for their role in set-
ting negative activations to zero, which can cause deep neu-
ral networks to interpret this suppression as the absence of
a feature. Thus, many XAI methods (e.g. gradient-based)
yield misleading attribution maps, as they cannot account
for this type of contribution. However, this phenomenon is
tightly controlled in SIC, where the sole operation follow-
ing the ReLU activation is a similarity computation between
the latent vectors of two images. As a result, the absence of
a feature does not, by design, affect the probability of class
logits, rendering it valid to disregard any input and its ex-
planation from neurons corresponding to such features.

A.3. Implementation and Training Details
Optimization All models were optimized using the
AdamW optimizer with fixed hyperparameters: weight de-
cay set to 0.0, betas configured to (0.9, 0.999), and an ep-
silon value of 1e-08. For FunnyBirds, we selected the de-
fault parameters of the framework: a learning rate of 0.001,
and weight decay of 0.0, trained for 100 epochs with a
temperature of 30 and a batch size of 8. For all other ex-
periments, we conducted an extensive grid search over the
hyperparameter space (see Tab. A.2) to identify the opti-
mal settings based on accuracy. The training employed a
custom learning rate scheduling policy, which began with
a linear warm-up phase over the first two epochs, increas-
ing the learning rate from 10% to the initial learning rate.
This was followed by maintaining the initial learning rate
until 50% of the total training iterations were completed.
Subsequently, the learning rate was decayed by a factor of
0.5 at every subsequent 10% milestone of the total itera-
tions. Batch sizes were set to 32 for all datasets except
RSNA, which utilized a batch size of 64. The number of
training epochs was standardized to 50 across all datasets,
with RSNA trained for 100 epochs. Pretrained feature ex-
tractor weights were sourced from torchvision https:
//pytorch.org/vision/stable/index.html
and the official B-cos repository https://github.
com/B-cos/B-cos-v2 for all experiments except
those involving RSNA. We train ProtoPNet with the de-
fault training recipe provided on the official GitHub imple-
mentation (https://github.com/cfchen-duke/
ProtoPNet) and adapted the code for VOC for multi-label
classification. Note that the NW-Head is not applicable to
multi-label classification tasks as it relies on softmax for

normalization, which can not be adapted with minor modi-
fications as done with ProtoPNet.

Model-specific parameters included setting B-cos B = 2
and using three support samples. We train the NW-Head
in the replace cluster mode. For SIC, the grid search ex-
plored learning rates of 0.01, 0.003, 0.001, and 0.0003 for
the RSNA dataset, and 0.0022, 0.001, 0.00022, 0.0001,
0.000022, and 0.00001 for other datasets. Temperature pa-
rameters tested were 10, 30, and 50 for RSNA, and 10 and
30 for the remaining datasets. For BlackBox models, the
grid search included the same learning rates as SIC and
additionally varied the weight decay parameter, evaluating
values of 0.0 and 0.0001. The best-performing models were
selected based on their accuracy metrics.

Architecture All backbones are extended by a linear pro-
jection layer to extract feature vectors ∈ Rd = 128. The
⊕ function is implemented as a ReLU activation in the ev-
idence predictor E , and the similarity function “sim” is im-
plemented by a B-cos linear layer. In multi-label classifica-
tion settings, only training samples with a single class label
are considered for support labels.

Datasets, Data Pre-Processing and Augmentation In
our study, we adhered to standard dataset splits to en-
sure consistency and comparability with existing research.
Specifically, for Stanford Dogs, and Pascal VOC, we uti-
lized the official training and testing partitions as provided.
Regarding the RSNA dataset, we employed the training set
from Stage 2 of the RSNA challenge and further subdivided
it by randomly sampling 25% of the training data to form
a separate test set, ensuring that the splits were stratified by
class label. Additionally, we verified that the distributions
across sex remained consistent following the splitting pro-
cess, as illustrated in Tab. A.3.

For non-Bcos models, we applied standard normaliza-
tion using the mean and standard deviation calculated from
the training set. Specifically, images were standardized with
mean values [0.485, 0.456, 0.406] and standard deviations
[0.229, 0.224, 0.225].

Data pre-processing for the Pascal VOC and Stan-
ford Dogs datasets included a RandomResizedCrop of
torchvision to a target size of 224 pixels using bilinear inter-
polation. We implemented a RandomHorizontalFlip
with a probability of 0.5. For non-Bcos models, standard-
ization was performed as mentioned above. Additionally,
we employed RandomErasing with a probability of 0.5
and a scale range of 2% to 33% of the image area.

We follow the FunnyBirds framework and use the default
data processing pipeline and compute the metrics with the
unsmoothed explanations ϕ, i.e. the alpha channel of RGBA
explanations.

https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://github.com/B-cos/B-cos-v2
https://github.com/B-cos/B-cos-v2
https://github.com/cfchen-duke/ProtoPNet
https://github.com/cfchen-duke/ProtoPNet


Method Dataset Backbone Best LR Best WD Best Temp. Acc (%)

BlackBox

VOC DenseNet121 2.2× 10−5 0.0 - 96.42
VOC ResNet50 1.0× 10−5 0.0 - 96.71
VOC VitC 1.0× 10−4 0.0 - 96.35
StanfordDogs ResNet50 1.0× 10−5 0.0 - 87.16
RSNA DenseNet121 3.0× 10−4 1.0× 10−4 - 79.78

NW-Head [31] StanfordDogs ResNet50 1.0× 10−5 0.0 - 85.16
RSNA DenseNet121 3.0× 10−4 1.0× 10−4 - 79.30

ProtoPNet [8]

VOC DenseNet121 - - - 91.19
VOC ResNet50 - - - 89.31
StanfordDogs ResNet50 - - - 49.24
StanfordDogs ResNet50* - - - 74.70
RSNA DenseNet121 - - - 78.68

BagNet [6]
VOC BagNet17 2.2× 10−5 1.0× 10−4 - 94.56
StanfordDogs BagNet17 2.2× 10−5 0.0 - 62.32
RSNA BagNet17 3.0× 10−4 1.0× 10−4 - 77.70

B-cos [5]

VOC DenseNet121 1.0× 10−4 - - 96.48
VOC ResNet50 1.0× 10−4 - - 96.85
VOC VitC 2.2× 10−5 - - 96.79
StanfordDogs ResNet50 1.0× 10−4 - - 85.54
RSNA DenseNet121 1.0× 10−2 - - 78.73

SIC

VOC DenseNet121 2.2× 10−4 - 30 96.73
VOC ResNet50 1.0× 10−4 - 30 97.00
VOC VitC 2.2× 10−5 - 10 96.72
StanfordDogs ResNet50 1.0× 10−4 - 10 83.46
RSNA DenseNet121 3.0× 10−4 - 50 79.13

Table A.2. Best configurations and performance of each model.
∗: optimized with training recipe published in [9] instead of [8].

Split Sex Target Num. Samples

Train

F No Opacity 6,770
F Opacity 1,873
M No Opacity 8,734
M Opacity 2,636

Test

F No Opacity 2,246
F Opacity 629
M No Opacity 2,922
M Opacity 874

Table A.3. Dataset statistics of the RSNA dataset.

For the RSNA dataset, intensity rescaling was conducted
to map the maximum Hounsfield Units to a range be-
tween 0 and 1. Data augmentation techniques included a
RandomHorizontalFlip with a probability of 0.5 and
a RandomAffine transformation. The RandomAffine
parameters consisted of rotations up to 45 degrees, transla-

tions of ±15% in each direction, and scaling factors ranging
from 0.85 to 1.15. We also applied RandomErasing with
a probability of 0.5, using patch sizes between 5% and 20%
of the image area.

A.3.1. FunnyBirds - ResNet50

Figure A.6. FunnyBirds [12] result of main metrics Completeness
(Com.), Background Independence (B.I.), Accuracy, Contrastivity
(Con.), Correctness (Cor.).



A.3.2. CUB-200-2011 - ResNet50
We trained SIC on the official splits of CUB-200-2011 [32]
(cropped ROI), achieving an accuracy of 79.8% (cmp. Pro-
toPNet 76.1-80.2% in Tab. 1 (top) [8]).



Method A BI CSDC PC DC D SD TS Com. Cor. Con.
ProtoPNet [8] 0.94 1.00 0.93 0.91 0.92 0.58 0.24 0.46 0.75 0.24 0.46
BagNet [6] 1.00 1.00 0.95 0.98 0.91 0.91 0.76 0.99 0.93 0.76 0.99
B-cos [5] 0.96 0.87 0.93 0.88 0.94 0.86 0.69 0.89 0.89 0.69 0.89
SIC (ours) 0.99 0.99 0.96 0.98 0.96 0.97 0.72 0.95 0.97 0.72 0.95

Table A.4. Results on the FunnyBirds Framework with a ResNet50 backbone. Note that Completeness (Com.) is the mean across
Controlled Synthetic Data Check (CSDC), Preservation Check (PC), Deletion Check (DC), and Distractability (D); Correctness (Cor.)
equals Single Deletion (SD), and Contrastivity (Con.) equals Target Sensitivity (TS).
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(a) Prediction of the representative FunnyBirds [12] test sample. The pri-
mary location of relevance is the tail of the bird, while the wings, beak, eyes,
and legs show a lower contribution. We observe a variety of poses of repre-
sentative support samples, e.g. a strong focus on the tail and wings in the first
support sample, a focus on the legs, eyes, and wings in the second support
sample, and a focus on all visible concepts in the last support sample.
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(b) Prediction of another test sample. Similar to (a), all concepts are relevant
for the decision making. While the tail appears to be the most important
concept for the classification in (a), the eyes seem more important in the spe-
cific example. Additionally, the long beak contributes over its whole length,
suggesting that the model is sensitive to the appearance of the concept rather
than encoding color only.

Figure A.7. Comparison of Explanations.



A.4. Additional Figures
A.4.1. VOC - ResNet50
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(a) Prediction for the bicycle class.
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(b) Prediction of the car class. Note the shift in contributions compared to
(a).
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(c) The model correctly found the chair.
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(d) And also the potted plants. Note the shift in contributions compared to
(c).

Figure A.8. In this and the following figures, they layout intro-
duces marginal changes compared to the main figure. Refer to
(a) for the respective explanations. This model was trained with a
ResNet50 backbone on VOC.
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(a) Prediction for the chair class.
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(b) Wrong prediction according to the label of the dining table.
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(c) Wrong prediction according to the label of a person.
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(d) And a wrong prediction, as the flower on the table was mistaken with a
potted plant.

Figure A.9. VOC ResNet50



A.4.2. VOC - VitC
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(a) Prediction for the bottle class.
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(b) Prediction of the person class.
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(c) For this test sample, this backbone was the only one not to mistake the
milk jugs with bottles.
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(d) Wrong prediction: The martial arts logo was mistaken with the labels
of the first two support samples.
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(e) Person was correctly classified.

Figure A.10. VOC VitC



A.4.3. Dogs - ResNet50
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(a) Correct classification. Note the insensitivity to the background.
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(b) Correct classification. Note the insensitivity to the background.
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(c) Incorrect classification. The model was very unsure about the class...
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(d) The model found very little evidence for two of the three support sam-
ples.

Figure A.11. ...and the correst class probability suggests that the
two breeds are indeed pretty similar.
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(a) Correct classification. Note the insensitivity to the background.
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(b) Correct classification. Note the insensitivity to the background.
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(c) Incorrect classification. The explanations suggest that the dog on the
left was prioritized by the network...
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(d) ...in contrast to the (arguable) true label. Compared to support samples,
the tip of the nose is relatively bright.

Figure A.12. Dogs Dataset ResNet50
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(a) Correct classification. Note how different poses of the support samples
lead to different contributions, which is also evident in ...
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(b) ...this figure. Here, the first support sample is most similar to the test
image, which is also cropped along the eyeline.

Figure A.13. Dogs Dataset ResNet50



A.4.4. RSNA - DenseNet121
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(a) Correct classification of an occlusion present sample.
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(b) Correct classification of an occlusion present sample.
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(c) Correct classification of occlusion present sample.
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(d) Correct classification of an occlusion present sample.

Figure A.14

A.4.5. VOC - DenseNet121: Prototypes and B-cos Simi-
larities
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(a) Correct classification of a control sample.
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(b) Correct classification of a control sample.
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(c) Incorrect classification of a control sample. The model likely mistook
the relatively large heart for pathology.
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(d) The model found very little evidence for two of the three support sam-
ples.
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Figure A.16. Prototypes of SIC trained with a DenseNet121 backbone on RSNA. Bounding boxes indicate where medical staff found
occlusion of the lungs. The first three columns are the support samples of controls, the next three are support samples with occlusion
present.

Figure A.17. t-SNE plot of the latent vectors of the RSNA training set. Red denotes samples of the class ”opacity” and blue the class ”no
opacity”. Support vector 0 and support vector 3 are very close in the projected latent visualization.



Figure A.18. Global explanations for SIC trained on Pascal VOC with a DenseNet121 backbone. The respective second rows show the raw
contribution maps ϕL

j=c, in which red denotes positive contributions and blue (absent) negative contributions. The respective third columns
present RGBA explanations.



Figure A.19. Heatmap of Intra-class and Inter-class B-cos Similarities for SIC trained on Pascal VOC with a DenseNet121 backbone.


