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A. Code

Code and pre-trained weights are available at
https://multiverseg.csail.mit.edu.

B. MultiverSeg Method

B.1. Architecture

CrossConv. We implement the CrossConvolutional layer
slightly differently from [11]. To avoid duplicate con-
volutions on the context features vi in Eq. 2, we parti-
tion weights θz channel-wise into {θz1 , θz2} and imple-
ment zi = LN(A(Conv(q, θz1) + Conv(vi, θz2))) where
q is the target feature map and vi is the feature map corre-
sponding to context set entry i. We zero out the bias terms
in Conv(·, θz2) such that the computation is equivalent to
zi = LN(A(Conv(q||vi; θz))).

Network. We implement fθ(·) using an encoder with 5 en-
coder CrossBlock stages and a decoder with 4 CrossBlock
stages. Each stage has 256 output features and LeakyReLU
non-linearities after each convolution. We use bilinear in-
terpolation for upsampling and downsampling.

The CrossBlock mechanism requires at least one context
set entry. If the context set is empty, we use a dummy con-
text set entry consisting of an image and segmentation with
uniform value of 0.5.

C. Data
C.1. Datasets
We build on large dataset gathering efforts like MegaMedi-
cal [11, 71, 83] to compile a collection of 79 open-access
biomedical imaging datasets for training and evaluation,
covering over 54k scans, 16 image types, and 713 labels.

Division of Datasets. The division of datasets and subjects
for training, model selection, and evaluation is summarized
in Tab. 1. The 79 datasets were divided into 67 training
datasets (Tab. 3 and 12 evaluation datasets (Tab. 2). Data
from 9 (out of 12) of the evaluation datasets were used for
model selection and final evaluation. The other 3 evaluation
datasets were completely held-out from model selection and
only used in the final evaluation.

Division of Subjects. We split each dataset into 60% train,
20% validation, and 20% test by subject. We used the
“train” splits from the 67 training datasets to train Multi-
verSeg models. We use the “validation” splits from the 67
training datasets and 9 validation datasets to select the best
model checkpoint. We report final evaluation results across
12 held-out “test” splits of the 12 evaluation datasets to
maximize the diversity of tasks and modalities in our evalu-
ation set (Tab. 2). No data from the 9 validation datasets or
3 test datasets were seen by MultiverSeg during training.

Task Definition. We define a 2D segmentation task as a
combination of (sub)dataset, axis (for 3D modalities), and
label. For datasets with multiple segmentation labels, we
consider each label separately as a binary segmentation
task. For datasets with sub-datasets (e.g., malignant vs. be-
nign lesions) we consider each cohort as a separate task.
For multi-annotator datasets, we treat each annotator as a
separate label. For instance segmentation datasets, we con-
sidered all instances as a single label.

3D Datasets. For 3D modalities, we use the slice with max-
imum label area (“maxslice”) and the middle slice (“mid-
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slice”) for each volume for training of MultiverSeg. For
the 3D evaluation datasets (BTCV Cervix [45], ACDC [7],
SCD [70], SpineWeb [88], COBRE [2], TotalSegmenta-
tor [82]) we evaluated the slice with the maximum label
area for each subject, as in [83]. We also considered eval-
uating on the middle slice, as in [11, 71, 84] and saw sim-
ilar trends on the validation data. However, we opted for
evaluation on maxslices because for our 3D test datasets
(COBRE, TotalSegmentator) some labels do not appear in
the midslices. Due to the large number of tasks in COBRE
and TotalSegmentator, we only consider coronal slices from
these datasets for evaluation.

Data Processing and Image Resolution. We rescale image
intensities to [0,1], padded square with zeros. For training,
we resized images to 1282. In our final evaluations, we use
images resized to 2562. We show additional evaluations on
1282 sized images in Appendix E.5.

Data Sampling. During training, we sample image, seg-
mentation pairs hierarchically – by dataset and modality,
axis, and then label – to balance training on datasets of dif-
ferent sizes.

C.2. Synthetic Task Generation
We introduce a new approach for constructing synthetic
tasks from real images. Given a single image x0, we con-
struct a set of images {x′

i, y
′
i}

m+1
i=1 representing a synthetic

task. We then partition this set into a target example and
context set of size m for training.

Related Work. Although previous work found that training
on a mix of real and synthetic segmentation labels based
on image superpixels is useful for improving generalization
in interactive segmentation [83], we do not use such data
here. That approach cannot be directly applied to Multi-
verSeg because it does not produce semantically consistent
labels across multiple images.

Method. To build a synthetic task from an image, we first
generate a synthetic label and then perform aggressive aug-
mentations to create a set of images corresponding to the
same synthetic task (Fig. 1).

Given an image x0, we first generate a synthetic label
ysynth by applying a superpixel algorithm [21] with scale
parameter λ ∼ U [1, λmax] to partition the image into a
multi-label mask of k superpixels z ∈ {1, . . . , k}n×n. We
then randomly select a superpixel ysynth = 1(z = c) as a
synthetic label.

To generate a set of m+1 images representing the same
task, we duplicate (x0, ysynth), m + 1 times and apply ag-
gressive augmentations to vary the images and segmenta-
tion labels [11, 86].

Implementation. MultiverSeg was trained with psynth =
0.5. We use a superpixel algorithm [21] with λ ∼ [1, 500].
Tab. 4 lists the data augmentations.

C.3. Data Augmentation

Tab. 5 shows the within-task augmentations and task-
augmentations used to train MultiverSeg [11, 71].

D. Experimental Setup

D.1. Baselines

We provide additional details on the baselines. We summa-
rize the capabilities of our method and baselines in Tab. 6.

SAM. We evaluated SAM [40] (ViT-b) in both “single-
mask” and “multi-mask” mode on our validation data, and
average results were better using “single-mask” mode. We
report final results for SAM on the test data using “single-
mask” mode.

UniverSeg. Previous work found that ensembling Uni-
verSeg predictions across multiple randomly sampled con-
text sets improved Dice score [11]. We report results with-
out ensembling to accurately reflect the mean Dice of pre-
dictions given a fixed size context set.

OnePrompt. OnePrompt [84] is a medical image segmen-
tation model that can perform in-context segmentation of
a target image given a single context example with scrib-
ble, click, bounding box or mask annotation on the con-
text image. OnePrompt can also be used for interactive
segmentation by using the same image as both the con-
text image and the target image. We do not compare to
OnePrompt because the pre-trained model weights are not
publicly available. Recreating the data processing and re-
training the model was beyond our computational capacity.
For reference, the OnePrompt model required 64 NVIDIA
A100 GPUs to train [84].

LabelAnything. LabelAnything [18] is an in-context seg-
mentation model designed for few-shot multi-label segmen-
tation of natural images. LabelAnything takes as input a tar-
get image to segment and a context set of images with multi-
label mask, click, or bounding box annotations. We do not
compare to LabelAnything because the pre-trained model
weights are not publicly available. As with OnePrompt,
recreating the data handling and retraining the model from
scratch was beyond our computational capacity.

D.2. Inference

Image Resolution. MultiverSeg, ScribblePrompt, and Uni-
verSeg, which were all developed and trained on 1282 sized
images, and output predictions at the same resolution. SAM
was trained with 10242 sized inputs and predicts segmenta-
tions at 2562 resolution. For each method, we resized the
inputs to the method’s training input size using bilinear in-
terpolation before performing inference and then resized the
output (as needed) to the evaluation resolution.



Table 1. Dataset split overview. Each dataset was split into 60% train, 20% validation and 20% test by subject. Data from the “train” splits
of the 67 training datasets were used to train the models. The MultiverSeg models did not see any data from the validation datasets or test
datasets during training. Data from the “validation” split of the 9 validation datasets was used for MultiverSeg ( MVS ) model selection and
experimenting with different evaluation methods of baselines. We report final results on the held-out test splits of 12 evaluation datasets:
data from the “test” splits of the 9 validation datasets and the “test” splits of the 2 test datasets. To train the fully-supervised nnUNet
baselines, we used the training and validation splits of the 12 evaluation datasets.

Split within each dataset by subject

Dataset Group No. Datasets Training Split (60%) Validation Split (20%) Test Split (20%)

Training Datasts 67 MVS training MVS model selection Not used
Validation Datasets 9 nnUNet training MVS and baselines model selec-

tion, nnUNet training

Final evaluation

Test Datasets 3 nnUNet training nnUNet training Final evaluation

Table 2. Evaluation datasets. We assembled the following set of datasets to evaluate MultiverSeg and baseline methods. For the relative
size of datasets, we include the number of unique scans (subject and modality pairs) and labels that each dataset has. These datasets were
unseen by MultiverSeg during training. Three datasets were completely held-out from model selection. The validation splits of the other
9 datasets were used for selecting the best model checkpoint. We report final results on the test splits of these 12 datasets.

Dataset Name Description Scans Labels Modalities

ACDC [7] Left and right ventricular endocardium 99 3 cine-MRI
BTCV Cervix [45] Bladder, uterus, rectum, small bowel 30 4 CT
BUID [3] Breast tumors 647 2 Ultrasound
COBRE [2, 17, 22] Brain anatomy 258 45 T1-weighted MRI
DRIVE [79] Blood vessels in retinal images 20 1 Optical camera
HipXRay [29] Ilium and femur 140 2 X-Ray
PanDental [1] Mandible and teeth 215 2 X-Ray
SCD [70] Sunnybrook Cardiac Multi-Dataset Collection 100 1 cine-MRI
SCR [80] Lungs, heart, and clavicles 247 5 X-Ray
SpineWeb [88] Vertebrae 15 1 T2-weighted MRI
TotalSegmentator [82] 104 anatomic structures (27 organs, 59 bones, 10

muscles, and 8 vessels)
1,204 104 CT

WBC [89] White blood cell cytoplasm and nucleus 400 2 Microscopy

D.3. Metrics

Averaging. When reporting average performance for a
dataset or across multiple datasets, we averaged metrics hi-
erarchically by subject, label, axis, modality, subdataset,
and then dataset.

Confidence Intervals. For Experiment 1, we calculate 95%
confidence intervals over results from 200 simulations with
different random seeds. For Experiment 2, we calculate
95% confidence intervals by bootstrapping over subjects
with 100 runs.

E. Experiment 1: Evaluation

E.1. Setup
We illustrate the process of segmenting a set of images us-
ing MultiverSeg in Fig. 3

Procedure. For all methods, we interactively segment a
seed image to 90% Dice using ScribblePrompt. This first
image was randomly sampled (for each simulation round)
from the training split. Since the number of interactions
and the prediction for this seed image is the same for all
methods, we exclude it from the reported results.

We report the number of interactions to achieve 90%
Dice for each of the next 18 images from the held-out test
split of our evaluation tasks. We conduct 200 rounds of
simulations, randomly sampling 18 test images (without
replacement) from each task and sequentially segmenting



Table 3. Train datasets. We train MultiverSeg on the following datasets. For the relative size of datasets, we have included the number of
unique scans (subject and modality pairs) that each dataset has.

Dataset Name Description Scans Modalities
AbdominalUS [81] Abdominal organ segmentation 1,543 Ultrasound
AMOS [35] Abdominal organ segmentation 240 CT, MRI
BBBC003 [52] Mouse embryos 15 Microscopy
BBBC038 [12] Nuclei instance segmentation 670 Microscopy
BrainDev [26, 27, 43, 75] Adult and neonatal brain atlases 53 Multimodal MRI
BrainMetShare[28] Brain tumors 420 Multimodal MRI
BRATS [4, 5, 64] Brain tumors 6,096 Multimodal MRI
BTCV Abdominal [45] 13 abdominal organs 30 CT
BUSIS [85] Breast tumors 163 Ultrasound
CAMUS [46] Four-chamber and Apical two-chamber heart 500 Ultrasound
CDemris [36] Human left atrial wall 60 CMR
CHAOS [37, 38] Abdominal organs (liver, kidneys, spleen) 40 CT, T2-weighted MRI
CheXplanation [73] Chest X-Ray observations 170 X-Ray
CoNSeP Histopathology Nuclei 27 Microscopy
CT2US [78] Liver segmentation in synthetic ultrasound 4,586 Ultrasound
CT-ORG[72] Abdominal organ segmentation (overlap with LiTS) 140 CT
DDTI [67] Thyroid segmentation 472 Ultrasound
DukeLiver [58] Liver segmentation in abdominal MRI 310 MRI
EOphtha [19] Eye microaneurysms and diabetic retinopathy 102 Optical camera
FeTA [66] Fetal brain structures 80 Fetal MRI
FetoPlac [6] Placenta vessel 6 Fetoscopic optical camera
FLARE [55] Abdominal organs (liver, kidney, spleen, pancreas) 361 CT
HaN-Seg [68] Head and neck organs at risk 84 CT, T1-weighted MRI
HMC-QU [20, 39] 4-chamber (A4C) and apical 2-chamber (A2C) left wall 292 Ultrasound
I2CVB [47] Prostate (peripheral zone, central gland) 19 T2-weighted MRI
IDRID [69] Diabetic retinopathy 54 Optical camera
ISBI-EM [13] Neuronal structures in electron microscopy 30 Microscopy
ISIC [15] Demoscopic lesions 2,000 Dermatology
ISLES [31] Ischemic stroke lesion 180 Multimodal MRI
KiTS [30] Kidney and kidney tumor 210 CT
LGGFlair [10, 62] TCIA lower-grade glioma brain tumor 110 MRI
LiTS [8] Liver tumor 131 CT
LUNA [76] Lungs 888 CT
MCIC [25] Multi-site brain regions of schizophrenic patients 390 T1-weighted MRI
MMOTU [87] Ovarian tumors 1,140 Ultrasound
MSD [77] Large-scale collection of 10 medical segmentation datasets 3,225 CT, Multimodal MRI
MuscleUS [61] Muscle segmentation (biceps and lower leg) 8,169 Ultrasound
NCI-ISBI [9] Prostate 30 T2-weighted MRI
NerveUS [65] Nerve segmentation 5,635 Ultrasound
OASIS [32, 59] Brain anatomy 414 T1-weighted MRI
OCTA500 [48] Retinal vascular 500 OCT/OCTA
PanNuke [23] Nuclei instance segmentation 7,901 Microscopy
PAXRay [74] 92 labels covering lungs, mediastinum, bones, and sub-diaphram in

Chest X-Ray
852 X-Ray

PROMISE12 [49] Prostate 37 T2-weighted MRI
PPMI [16, 60] Brain regions of Parkinson patients 1,130 T1-weighted MRI
QUBIQ [63] Collection of 4 multi-annotator datasets (brain, kidney, pancreas and

prostate)
209 T1-weighted MRI, Multi-

modal MRI, CT
ROSE [57] Retinal vessel 117 OCT/OCTA
SegTHOR [44] Thoracic organs (heart, trachea, esophagus) 40 CT
SegThy [41] Thyroid and neck segmentation 532 MRI, Ultrasound
ssTEM [24] Neuron membranes, mitochondria, synapses and extracellular space 20 Microscopy
STARE [33] Blood vessels in retinal images 20 Optical camera
ToothSeg [34] Individual teeth 598 X-Ray
VerSe [53] Individual vertebrae 55 CT
WMH [42] White matter hyper-intensities 60 Multimodal MRI
WORD [54] Abdominal organ segmentation 120 CT



Figure 1. Synthetic task generation example. Given an input image, we apply a superpixel algorithm to generate a superpixel map of
potential synthetic labels. We randomly sample one of the superpixels to serve as a synthetic label. Next, we duplicate the input image and
synthetic label m+1 times and apply data augmentations (Tab. 4) to vary the examples within the synthetic task. We use the first synthetic
example as the target and the remaining m synthetic examples as the context set during training.

Augmentations p Parameters

degrees ∈ [−25, 25]
translation ∈ [0, 0.2]Random Affine 0.8

scale ∈ [0.9, 1.5]
brightness ∈ [−0.1, 0.1]Brightness Contrast 0.5 contrast ∈ [0.5, 1.5]

α ∈ [1, 10]Elastic Transform 0.8
σ ∈ [8, 15]

Sharpness 0.5 sharpness = 5
σ ∈ [0.1, 1.5]Gaussian Blur 0.5

k = 5
µ ∈ [0, 0.05]Gaussian Noise 0.5
σ ∈ [0, 0.05]

Horizontal Flip 0.5 None
Vertical Flip 0.5 None

Table 4. Data augmentations for generating synthetic tasks.
Given a set of m + 1 copies of the same example, we randomly
sampled data augmentations for each instance to increase the di-
versity of examples within the task. Each augmentation is sampled
with probability p.

them using each method. We use the same random seeds for
each method, so the sampled examples are the same across

methods for each simulation round.

Tasks. We exclude tasks with fewer than 18 test ex-
amples, leaving 161 tasks from 8 evaluation datasets [1–
3, 7, 29, 80, 82, 89]. We selected this cutoff based on the
distribution of task sizes in our validation data (Fig. 2) to fo-
cus on scenarios where a user wants to segment many simi-
lar images.

Data. We conducted our evaluation on 2562 sized images.
For each method, we resized the inputs to match the size
of the model’s training data before performing the forward
pass, and then resized the prediction back to 2562 before
calculating the Dice Score. In Appendix E.5 we conduct
a sensitivity analysis, performing the evaluation with 1282

sized images

E.2. Interactions per Image as a Function of Dataset
Size

Results by dataset. As more examples are segmented and
the context set grows, the number of clicks and scribbles
required to get to 90% Dice on the nth example using Mul-
tiverSeg decreases substantially. Fig. 4 and Fig. 5 show re-
sults averaged by dataset. MultiverSeg and SP+UVS are
less effective at reducing the number of clicks for tasks from
BUID, a breast ultrasound lesion segmentation dataset, per-



Augmentations p Parameters

degrees ∈ [−25, 25]
translation ∈ [0, 0.1]Random Affine 0.25

scale ∈ [0.9, 1.1]
brightness ∈ [−0.1, 0.1]Brightness Contrast 0.25 contrast ∈ [0.5, 1.5]

α ∈ [1, 2.5]Elastic Transform 0.8
σ ∈ [7, 9]

Sharpness 0.25 sharpness = 5
σ ∈ [0.1, 1.0]Gaussian Blur 0.25

k = 5
µ ∈ [0, 0.05]Gaussian Noise 0.25
σ ∈ [0, 0.05]

(a) Within-Task Augmentations

Augmentations p Parameters

degrees ∈ [0, 360]
translates ∈ [0, 0.2]Random Affine 0.5
scale ∈ [0.8, 1.1]

brightness ∈ [−0.1, 0.1]Brightness Contrast 0.5 contrast ∈ [0.8, 1.2]
σ ∈ [0.1, 1.1]Gaussian Blur 0.5

k = 5
µ ∈ [0, 0.05]Gaussian Noise 0.5
σ ∈ [0, 0.05]
α ∈ [1, 2]Elastic Transform 0.5
σ ∈ [6, 8]

Sharpness 0.5 sharpness = 5
Horizontal Flip 0.5 None
Vertical Flip 0.5 None
Sobel Edges Label 0.5 None
Flip Intensities 0.5 None

(b) Task Augmentations

Table 5. Augmentations used to train MultiverSeg. Within-task
data augmentations (top) are randomly sampled for each example
within a task to increase the diversity within a task. Task aug-
mentations (bottom) are randomly sampled for each task and then
applied to all examples in a task to increase the diversity of tasks.
Each augmentation is randomly sampled with probability p. We
apply augmentations after (optional) synthetic task generation and
before simulating user interactions.

haps due to the heterogeneity of examples in that dataset.

Tasks with more examples. We show results by task for
three datasets with more than 18 test examples per task
(Fig. 6, Fig. 7, and Fig. 8). For larger sets of images, using
MultiverSeg results in even greater reductions in the total
and average number of user interactions.

Context Set Quality. For MultiverSeg and SP+UVS,
thresholding the predictions before adding them to the con-
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Figure 2. Examples per task. We visualize the distribution of
examples per task in our validation data. We only consider tasks
with at least 18 examples in Experiment 1.

text set improved performance (Fig. 9). We use the valida-
tion split of our validation data (at 1282 resolution) to select
the best approach (soft or binary predictions in the context
set) for each method.

MultiverSeg does not perform well when the context set
contains soft predictions from previous examples, likely be-
cause it was trained with ground truth context labels. The
number of interactions to 90% Dice is lowest when the con-
text set contains ground truth labels, however this is not re-
alistic in practice.

SP+UVS. Consistent with the original published results, we
find that UniverSeg has poor performance for small context
sets and initializing ScribblePrompt using the UniverSeg
prediction hurts performance when the context set is small.
In our final evaluation of SP+UVS, we set the minimum
context set size to be 5 examples: when the context sets
contains fewer than 5 examples, we ignore the context and
only use ScribblePrompt to make predictions. Fig. 10 shows
variations of SP+UVS with different minimum context set
sizes on validation data at 1282 resolution.

Total Interactions. Fig. 11 shows the total number of in-
teractions, average Dice score, and average 95th percentile
Hausdorff distance across all tasks.

E.3. Bootstrapping In-Context Segmentation

Setup. For UniverSeg [11], a non-interactive in-context
segmentation method, we segment the dataset by bootstrap-
ping from a single context example with ground truth seg-
mentation. For each image in the dataset, we make an in-
context prediction and then add the prediction to the context
set for the next image until all images in the dataset have
been segmented. As an upper bound on performance, we
also evaluated using ground truth labels in the context set



Method Interactive In-Context Interactive In-Context

SAM [40] ✓
MedSAM [56] ✓
SAM-Med2D [14] ✓
SegNext [50] ✓
ScribblePrompt [83] ✓

UniverSeg [11] ✓
LabelAnything [18] ✓

OnePrompt [84] ✓ ✓ (context size = 1)
SP+UVS ✓ ✓ ✓

MultiverSeg (ours) ✓ ✓ ✓

Table 6. Summary of segmentation methods.

instead of previously predicted segmentations (“UniverSeg
(oracle)”).

Results. This approach did not produce accurate re-
sults, likely because UniverSeg has poor performance for
small context sets and/or context sets with imperfect labels
(Fig. 12a). Because UniverSeg does not have a mechanism
to incorporate corrections, it was not possible to achieve
90% Dice for most images (Fig. 12b). Fig. 13 shows re-
sults by individual dataset.

Context Set Quality. As with other methods (MultiverSeg
and SP+UVS), we experimented with thresholding the pre-
dictions at 0.5 before adding them to the context set. For
UniverSeg, thresholding the predictions did not improve
Dice scores compared to using the soft predictions in the
context set.

E.4. Comparison to Few-Shot Fine-Tuning
One approach to segmenting a new dataset is to (interac-
tively) segment a few images using a pre-trained foundation
model, and then use those examples to train a task-specific
interactive segmentation model by fine-tuning the founda-
tion model. In this experiment, we simulated this process
using ScribblePrompt.

Setup. For each task and random seed, we sampled 5 ran-
dom test examples, and used ScribblePrompt to segment
those images using simulated random center clicks. For
each image of the 5 images, random center clicks were used
to prompt ScribblePrompt until a maximum of 20 clicks
was reached or the prediction surpassed 90% Dice. Then
we used those newly labeled images to fine-tune Scrib-
blePrompt from pre-trained weights. We randomly split the
5 images into 4 training examples and 1 validation example.

We fine-tuned ScribblePrompt using the same training
interaction protocol, loss function, and data augmentations
(Appendix C.3) as MultiverSeg minus synthetic task aug-
mentations. Each task-specific model was fine-tuned for

300 epochs using the Adam optimizer with a learning
rate of 1e−6 and batch size of 4. These hyperparame-
ters were selected based on experiments with learning rate
∈ {1e−4, 1e−5, 1e−6} and batch size ∈ {4, 8} using the cy-
toplasm segmentation task from the WBC [89] dataset. For
each training run the best checkpoint was selected based on
the validation example and then used to interactively seg-
ment 13 more test images (to complete the set of 18).

We repreated this procedure of labelling images and
training tasks-specific models for 5 random seeds for each
task. Due to the large number of tasks-specific models
trained for this experiment, we trained and evaluated on im-
ages at 1282 to reduce training time.

Runtime. Fine-tuning ScribblePrompt to produce each
task-specific interactive segmentation model took on aver-
age 20 minutes on a NVIDIA A100 GPU. In contrast, Mul-
tiverSeg’s inference time is < 150 milliseconds, even with
a context set size of 64 examples (Appendix F.3).

Results. Fig. 14 shows MultiverSeg required fewer inter-
actions than fine-tuning ScribblePrompt in 13 out of 16
scenarios. On average, the fine-tuning approach required
5.90± 0.10 clicks or 2.63± 0.13 scribble steps per image.
MultiverSeg required fewer interactions: 4.64± 0.10 clicks
or 4.64± 0.10 scribble steps per image.

E.5. Resolution Sensitivity Analysis
We conduct a sensitivity analysis, evaluating MultiverSeg
and the baseline methods at 1282 resolution.

Results. MultiverSeg outperforms the baselines with
greater margins when evaluated at 1282 resolution com-
pared to 2562 resolution. As more examples are segmented
and the context set grows, the number of interactions re-
quired to get to 90% Dice (NoI90) on the nth example using
MultiverSeg decreases substantially (Fig. 15).

MultiverSeg required the fewest number of interactions
per image on all datasets (Fig. 16). On average, using Mul-



Example 0: Interactive Segmentation

Example 1 to n: Interactive Segmentation in Context

Example n+1: In-Context Segmentation

…

…

…

Figure 3. Example segmentation process with MultiverSeg. We begin by interactively segmenting a seed image (Example 0) to 90%
Dice. The Example 0 image and final prediction are added to the context set for subsequent examples. For each subsequent example, we
first make an initial in-context segmentation prediction using a context set containing all the previous examples and previously predicted
segmentations. Then, we simulate center correction clicks until the predicted segmentation achieves ≥ 90% Dice or we have accrued 20
clicks. For Example 2, we only simulated 1 correction because the prediction reached 90% Dice after 1 correction click. For Example 1
and Example 3, additional correction clicks were needed. When the context set is large enough (>n), the in-context prediction from Mul-
tiverSeg may be accurate enough that no corrections are needed. For Example 10, the Dice score of the predicted in-context segmentation
is greater than 90% so we do not need to simulate any corrections. In practice, n varies by task.
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Figure 4. Clicks to target Dice on unseen datasets. Number of interactions needed to reach 90% Dice as a function of the example
number being segmented. For the nth image being segmented, the context set has n examples. MultiverSeg requires substantially fewer
interactions to achieve 90 Dice than the baselines, and as more images are segmented, the average number of interactions required decreases
dramatically. Shaded regions show 95% CI from bootstrapping.

tiverSeg reduced the number of clicks required to segment
each dataset by (36.93 ± 1.53)% and the number of scrib-
ble steps required by (36.93 ± 1.53)% compared to Scrib-
blePrompt.

F. Experiment 2: Analysis

F.1. In-Context Segmentation

Results. Fig. 17 show results by dataset with different con-
text set sizes.

F.2. Interactive Segmentation In Context

Results. Fig. 18 and Fig. 19 show results by dataset using
center clicks and centerline scribbles, respectively.

F.3. Inference Runtime and Memory Usage
MultiverSeg’s inference runtime scales linearly with the
context set size (Tab. 7). However, even with a context set of
64 examples, the runtime is under 150ms. Prior work on in-
teractive interfaces indicates < 500ms latency is sufficient
for cognitive tasks [51]. Since the interactions are stored in
masks, inference runtime (per prediction) is not affected by
the number of user interaction inputs.
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Figure 5. Scribbles to target Dice on unseen datasets. Number of interactions needed to reach 90% Dice as a function of the example
number being segmented. For the nth image being segmented, the context set has n examples. MultiverSeg requires substantially fewer
interactions to achieve 90 Dice than the baselines, and as more images are segmented, the average number of interactions required decreases
dramatically. Shaded regions show 95% CI from bootstrapping.

Context Size Inference Time (ms) GPU Memory

1 25.28± 0.16 28 MB
16 57.05± 0.20 1.89 GB
32 86.57± 0.06 3.64 GB
64 146.04± 0.16 7.15 GB

128 267.42± 0.24 12.16 GB
256 604.15± 0.36 24.17 GB

Table 7. Inference runtime and GPU memory usage with dif-
ferent context set (CS) sizes. We report mean ± standard de-
viation runtime in milliseconds across 1,000 predictions at 1282

resolution with 1 click on an NVIDIA A100 GPU. GPU memory
usage is reported as peak allocated memory during inference.
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Figure 6. Scribble steps to target Dice by task for WBC. Num-
ber of interactions needed to reach a 90% Dice as a function of the
example number being segmented. For the nth image being seg-
mented, the context set has n examples. Shading shows 95% CI
from bootstrapping. WBC [89] is a microscopy dataset containing
segmentation tasks for cytoplasm and nuclei of white blood cells.
After segmenting a few images from the femur task with Multi-
verSeg, the rest of the images in the task can be segmented (to
≥ 90% Dice) with minimal (or no) additional interactions.
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Figure 7. Scribble steps to target Dice by task for BUID. Num-
ber of interactions needed to reach a 90% Dice as a function of the
example number being segmented. For the nth image being seg-
mented, the context set has n examples. Shading shows 95% CI
from bootstrapping. BUID [3] is a breast ultrasound dataset con-
taining segmentation tasks for benign and malignant lesions. As
the context set of completed segmentations grows, the number of
interactions required to segment each additional image with Mul-
tiverSeg gradually declines.
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Figure 8. Center clicks to target Dice by task for HipXRay.
Number of interactions needed to reach 90% Dice as a function of
the example number being segmented. For the nth image being
segmented, the context set has n examples. Shading shows 95%
CI from bootstrapping. HipXRay [29] is an X-Ray dataset with
segmentation tasks for the femur and ilium bones. After segment-
ing a few images from the femur task with MultiverSeg, the rest
of the images in the task can be segmented (to ≥ 90% Dice) with
minimal additional interactions.
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a 90% Dice as a function of the example number being segmented. For the nth image being segmented, the context set has n examples.
We show results with and without thresholding the predictions (“Binary Predictions” vs. “Soft Predictions”) . We expect the number of
interactions with “Ground Truth” context to be a lower bound on the number of interactions to reach 90% Dice. We show results averaged
across validation tasks.
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Figure 10. Variations of SP+UVS. Number of interactions needed to reach a 90% Dice as a function of the example number being
segmented. For the nth image being segmented, the context set has n examples. We show results for SP+UVS with different minimum
context set size cutoffs, along with ScribblePrompt for reference. SP+UVS with a minimum context set size of k, means that when the
context set has fewer than k examples, we perform interactive segmentation with ScribblePrompt (ignoring the context examples). When
the context set is larger than the minimum size, we first make an in-context segmentation prediction using UniverSeg and then correct that
prediction with ScribblePrompt. For small context set sizes, UniverSeg does not make accurate predictions, and initializing ScribblePrompt
with UniverSeg’s prediction increases the number of interactions required to reach 90% Dice. We show results averaged across validation
tasks.



Interaction Protocol Method Dice Score ↑ HD95 ↓ Total Steps ↓
Center Clicks SAM-Med2D 85.88± 0.14 3.76± 0.22 215.58± 2.22

IMIS-Net 81.38± 0.30 13.05± 0.79 255.47± 2.53
SAM 90.40± 0.06 1.40± 0.03 152.55± 1.76
SegNext 90.50± 0.05 1.84± 0.06 158.16± 0.95
ScribblePrompt 90.80± 0.08 1.48± 0.04 137.10± 1.21
SP+UVS 90.70± 0.09 1.49± 0.06 122.01± 1.93
MultiverSeg (ours) 91.40± 0.14 1.26± 0.11 87.18± 1.92

Centerline Scribbles SAM-Med2D 29.58± 3.92 26.42± 3.36 178.00± 1.19
IMIS-Net 80.93± 0.40 3.43± 0.32 123.46± 2.85
SAM 80.19± 0.74 19.79± 1.78 125.14± 2.56
ScribblePrompt 88.19± 0.24 1.44± 0.06 100.70± 2.67
SP+UVS 88.57± 0.23 1.44± 0.07 92.50± 1.95
MultiverSeg (ours) 88.65± 0.22 1.49± 0.13 75.23± 1.50

Figure 11. Average segmentation quality and total interactions per unseen task. We measure average segmentation quality across a set
of 18 test images using Dice score and 95th percentile Hausdorff distance (HD95). For each metric, we show mean and standard deviation
from bootstrapping. Dice and HD95 are similar across methods because we simulate interactions until the predicted segmentation has
≥ 90% Dice or the maximum number of interaction steps is reached. MultiverSeg requires the fewest interaction steps per task on average.
We report results on images at 2562 resolution from 200 simulations.
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(a) Dice score by example number. We show average Dice Score
across unseen test data by example number. We exclude the initial seed
example, such that for the nth image being segmented, the context set
has n examples.

Method Dice Score ↑ No. Failures ↓
UniverSeg 48.89± 1.87 16.76± 0.40
UniverSeg (oracle) 68.15± 1.00 13.58± 0.24

(b) Average performance on unseen tasks. We report average Dice score per
task of 18 images and the average number of examples where the Dice score
was less than 90%. We report standard deviation across 200 simulations.

Figure 12. Bootstrapping UniverSeg. We use UniverSeg to sequentially segment images starting from a single example with a ground
truth segmentation. After segmenting each image, the image and predicted segmentation are added to the context set for the next example.
For the “oracle” version, we use ground truth labels in the context set instead of previously predicted segmentations. Even when using
ground truth labels in the context set, which we expect to be an upper bound on performance, it was not possible to achieve 90% Dice for
most images.



10

30

50

70

90
Di

ce
 S

co
re

ACDC BUID COBRE HipXRay

1 5 10 15
nth Example in Dataset

10

30

50

70

90

Di
ce

 S
co

re

PanDental

1 5 10 15
nth Example in Dataset

SCR

1 5 10 15
nth Example in Dataset

TotalSegmentator

1 5 10 15
nth Example in Dataset

WBC

Method
UniverSeg
UniverSeg (oracle)
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After segmenting each image, the image and predicted segmentation are added to the context set for the next example. For the “oracle”
version, we use ground truth labels in the context set instead of previously predicted segmentations. We exclude the initial seed example,
such that for the nth image being segmented, the context set has n examples. Shaded regions show 95% CI from bootstrapping.
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Figure 14. MultiverSeg outperforms task-specific fine-tuning on most datasets. We show average number of clicks and scribble steps
per image to segment 18 images to ≥ 90% Dice for each method. For FT ScribblePrompt (shaded), we used ScribblePrompt to interactively
segment 5 images and then used those examples to fine-tune ScribblePrompt before interactively segmenting the rest. MultiverSeg required
fewer interactions thant fine-tuned ScribblePrompt in 13 out of 14 scenarios. Error bars show 95% CI accross 5 random seeds.
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Figure 15. Interactions to target Dice on unseen tasks at 1282 resolution. Number of interactions needed to reach a 90% Dice as
a function of the example number being segmented. For the nth image being segmented, the context set has n examples. MultiverSeg
requires substantially fewer number of interactions to achieve 90% Dice than the baselines, and as more images are segmented, the average
number of interactions required decreases dramatically. Shaded regions show 95% CI accross 200 random seeds.
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Figure 16. Interactions per image by unseen dataset at 1282 resolution. We show average number of clicks and scribble steps per image
to segment 18 images to ≥ 90% Dice for each method. In all scenarios, MultiverSeg required fewer or the same number of interactions
than the best baseline. Error bars show 95% CI accross 200 random seed.
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Figure 17. In-context segmentation performance across context set sizes on unseen datasets. We compare MultiverSeg to UniverSeg,
an in-context segmentation method, given ground truth context labels. Points show results for context set sizes 1, 2, 4, 8, 16, 32, 64, 96,
128 and 256. Shading shows 95% CI from bootstrapping.
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Figure 18. Interactive segmentation in context with center clicks on unseen datasets. MultiverSeg’s interactive segmentation perfor-
mance with the same number of interactions improves as the context set size grows. We first make an initial prediction based on the context
set (step 0), and then simulate corrections with one center click at a time. Shading shows 95% CI from bootstrapping.
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Figure 19. Interactive segmentation in context with centerline scribbles on unseen datasets. MultiverSeg’s interactive segmentation
performance with the same number of interactions improves as the context set size grows. We first make an initial prediction based on the
context set (step 0), and then simulate centerline scribble corrections. Shading shows 95% CI from bootstrapping.
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