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Appendix

A. Metrics and Other Technical Details
We use the best Average/Final Displacement Error over
K trajectories (minADEK /minFDEK) to measure perfor-
mance [1, 6]. In our main manuscript, we abbreviate them
as “ADE” and “FDE” to save space. For an ego agent i, de-
note the kth model output as Ŷi

k, and the predicted position
on the tth future frame as p̂k

i
t, we have
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In addition, due to page limitations, some technical de-
tails are not presented in the main manuscript. These parts
are unrelated to our contributions but may be used to repro-
duce our work:

The linear trajectory (including both the linear fit and the
linear base) will be translated by adding a constant vector to
ensure that it can intersect with the observed trajectory at the
current observation moment (t = th) to maintain continuity.
When computing the differential feature in the original Eq.
(5), the outer product is also used to enhance the modeling
capacities of trajectory spectrums in embedding networks
Ne and Ne,l [19]. Also, following previous works [10],
category labels of agents have been encoded through one
simple linear layer when embedding their trajectories only
in nuScenes to learn the significant interclass differences of
heterogeneous agents (vehicles).

In the original Eq. (8), we use linear-speed interpolation
to obtain the final forecasted self-biases since it could be
difficult for either pedestrians or vehicles to make sudden
changes in their velocities (amplitude and direction) while
in motion. This means that when computing, we add the
condition of equal velocities to the left and to the right of
the interpolation keypoints.

Please also note that our used eth split from the ETH-
UCY is actually the 6-frame-sampled version, similar to
those used in SR-LSTM [24]. Other splits {hotel, univ*,
zara*} used are still sampled with a 10-frame interval.
The original eth video is accelerated. It means that
only under this 6-frame sampling interval the observation
and prediction periods are aligned with other ETH-UCY
scenes (videos). Some researchers have used the 10-frame-
sampled version to train their models and report their re-

Method Performance (SDD) t1 t1k Parameter

E-V2-Net [19] 6.57/10.49 28 112 1,976,864
SocialCircle [17] 6.54/10.36 34 119 1,989,536
SocialCircle+ [18] 6.44/10.22 41 126 1,990,177
Re (variation a2) 6.93/10.26 29 91 2,046,428
Re (variation a8) 6.33/10.45 34 211 1,242,924
Re (full) 6.27/10.02 56 263 3,149,192

Table 1. Comparisons of the average inference times (on an Apple
M1 Mac mini (2020, 8GB Memory)) under the batch size of 1 and
1000 (denoted as t1 and t1k correspondingly, reported in millisec-
onds), and parameter amount.

sults, but we cannot make a clear distinction at this time
because some of the researchers have not contributed open-
source repositories, thus our reported results are their re-
ported ones in their papers. We have provided our python
script to generate 10-frame-sampled eth dataset in our code
repo for training Re models that could be trained and com-
pared with these approaches directly.

Please refer to our code repo (https://github.
com/cocoon2wong/Re) to learn how these details are
implemented.

B. Model Efficiency Analyses

We report the inference times and parameter amount of the
proposed Re in comparison to several newly published ap-
proaches in Tab. 1. Due to the vibration-like prediction
strategy, two trajectory biases should be forecasted (through
two mirrored Transformer backbones) when making the fi-
nal prediction. This means that the time-space efficiency of
Re is naturally a bit disadvantaged compared to other meth-
ods, requiring roughly twice as much parameterization and
inference time as other methods.

By comparing several newly published methods that ob-
tained similar prediction performance, it can be seen that
Re still has considerable time-space efficiency. Please note
that these efficiency experiments are conducted on one Ap-
ple M1 Mac mini (2020, 8GB Memory), whose computing
performance is roughly the same as current (2024) smart-
phones. Computations on such devices may be more in
line with trajectory prediction application scenarios, pro-
viding a more valuable reference for efficiency analyses,
rather than on high-performance server clusters. Whether
the batch size is 1 or 1000, it still could forecast trajec-
tories within the low-latency [9] thresholds, i.e., it could
forecast trajectories within each adjacent sampling interval

https://github.com/cocoon2wong/Re
https://github.com/cocoon2wong/Re


Figure 1. Energy shares of trajectory biases on different datasets.

∆t = 0.4 seconds, even on the Apple M1 that performs
similar to current iPhones. Notably, its variation a2 (pre-
dict linear base + self-bias, see the original Tab. 4) takes
only about 30% inference time of the full model, still with
acceptable quantitative performance, especially with better
FDE than E-V2-Net and SocialCircle. In addition, another
variation, a8 (predict linear base + re-bias), owns the min-
imum number of parameters and also achieves better ADE
than these baselines, indicating comparable prediction per-
formance. Therefore, depending on the application’s needs,
whether it is a fast calculation or an accurate one, the pro-
posed Re method may cope with it.

C. Additional Discussions on Trajectory Biases
C.1. Contributions of Vibrations (Biases)
In the main manuscript, we have analyzed different trajec-
tory biases and their spatial distributions in a visualized
way. Here, we further discuss how these bias terms con-
tribute quantitatively to final forecasted trajectories. We use
the energy of trajectories as a measurement to simplify the
calculation. It is computed as the square sum of each point
in the trajectory X, i.e., the ∥X∥2. Fig. 1 reports these
biases’ average percentage energy shares across different
datasets. It can be seen that the linear base occupies the
most energy, while other terms may change over datasets.
For example, the linear base occupies less energy on SDD,
nuScenes, and NBA than those on ETH-UCY, indicating
that there might be more non-linear trajectories, especially
those caused by socially interactive behaviors.

This phenomenon aligns with previous research [11]
that the simulation of trajectories themselves (the non-
interactive terms, i.e., the linear base plus the self-bias in
the proposed Re) has become the most important optimiza-
tion objective for most trajectory prediction networks. Un-
der this circumstance, we notice that the re-bias (under so-
cial excitations) has not been compressed significantly, par-
ticularly in comparison to the self-bias (Newtonian excita-
tions). Instead, self-bias and re-bias provide almost identi-
cal contributions. This implies that the predicted trajectories
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Figure 2. The changes of self-biases and re-biases during training
(after how much training batches before finishing training 1 epoch
of the whole dataset).
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Figure 3. Visualized trajectory biases (K = 20) on NBA. Dif-
ferent from other datasets, we found that self-biases and re-biases
vibrate in directions about π/3 (60 degrees) away from each other.

have been decomposed into distinct biases that hold approx-
imately the same energy (instead of being drowned out by
other terms) except for their linear portions, thus roughly
validating the usefulness of these biases.

C.2. Spatial Distributions of Vibrations
We have concluded in the main manuscript that self-bias
and re-bias vibrate almost vertically in different directions.
We now further discuss this phenomenon. Please note
that this phenomenon is different from our angle-based ap-
proach to gather resonance features when forecasting re-
biases, even though words like “angles” or “directions”
are evolved in both these approaches. Such a vertically-
vibrating phenomenon is directly caused by our vibration-
like trajectory prediction strategy that forecasts trajectories
with multiple trajectory biases. For the convenience of rep-
resentation, we define the vibration direction of a trajectory
bias as the acute angle between the fitting line of the pre-
dicted K = 20 trajectory bias points on the last predicted
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Figure 4. Vibration directions (defined as the acute angle between the fitting line of the predicted K = 20 trajectory bias points on the last
predicted moment and the horizontal direction, including the angle of self-biases θs and the angle of re-biases θr) on different epochs when
training on the pedestrian dataset ETH-UCY. We can consider self-bias and re-bias to be vibrating vertically when θs+θr approaches π/2.

moment and the horizontal direction. Thus, we have angles
θs and θr to represent how self-biases and re-biases vibrate.

Fig. 4 shows how angles θs and θr change with train-
ing epochs during one training progress. It can be seen that



each angle, whether θs or θr, gradually converges to a par-
ticular value for each sample during training. These con-
vergence processes may be followed by numerical oscilla-
tions, and the convergence values may not be the same for
every sample. Especially, we observe that the convergence
value of θs + θr is around π/2 (90 degrees) for most pedes-
trian samples, which is our described vertically-vibrating
phenomenon in the main manuscript. In addition, it also
shows that the nonlinearities of these trajectory biases have
been reassigned during training. For example, we can see
stronger nonlinearities in the predicted self-biases after 3
training epochs than those in re-biases in Fig. 4 (a) and (c).
However, self-biases become more linearly distributed over
time (as expected when wiring the Transformer Ts). Such
nonlinearities seem to be taken over by the other re-biases,
better seen by comparing the forecasted re-biases at epochs
50 to 200 in Fig. 4 (a) and (c).

Fig. 2 represents how these trajectory biases are dis-
tributed and how they change during training at several ini-
tial training steps (after how many batches of training data).
It can be seen that these biases are almost randomly dis-
tributed at the very first training step, with none of the
linearity/nonlinearity or vertically vibrating properties pre-
sented. We also observe that it is the re-bias that leads
the training. For example, the phenomenon that predicted
points in re-biases distributed around a straight line has al-
ready appeared after 16 batches in Fig. 2, while it appears
for self-biases until training after 32 batches.

In addition to our descriptions of the original Fig. 8 in
the main manuscript, the changes in these biases can also
be roughly explained as a two-player cooperative game.
In detail, our goal is to learn to forecast two trajectory
biases (the linear base is not trainable), ∆Ŷi

s and ∆Ŷi
r,

to fit the given trajectory Yi − Ŷi
l . Also, these two bi-

ases share almost equal positions in the prediction network,
since whether their mirrored Transformer structures or they
are exactly the same additive weight (both equal to 1, since
Ŷi = Ŷi

l +∆Ŷi
s +∆Ŷi

r). Intuitively, these biases would
not have the same amplitude and would not vibrate in the
same direction, as this would cause the whole network to get
confused and not be able to distinguish samples that have
similar ego trajectories but with different neighbors and dif-
ferent future trajectories, since self-biases are learned and
predicted only by the ego agent, whereas re-biases are by
the ego agent and all neighbors together. In other words,
only re-biases could tell such socially different differences.
This means that these two biases are more inclined to vi-
brate in different directions, and re-biases would be the first
ones to distinguish different training samples, where the dif-
ferences of their future trajectories are mostly caused by
their differently distributed neighbors. Under this circum-
stance, the differences between self-biases and re-biases
may increase as the training progresses. Thus, after a period
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Figure 5. Further comparisons of resonance features in more com-
plex interactive scenes. Colored dots represent the value of feature
energy ∥f i←j∥2, and each blue box represents resonance features
in the feature space {f i←j |1 ≤ j ≤ Na, j ̸= i}.

of cooperation, these biases would likely show the greatest
difference in vibrational directions, leading to our observed
vertically vibrating phenomenon.

Note that these explanations are only meant to provide
a more intuitive understanding of two trajectory biases vi-
brating vertically to each other and are not strict proofs. Af-
ter our validation, similar phenomena have been presented
on pedestrian datasets ETH-UCY and SDD. However, as
we show in the original Fig. 7 (a6) and (c6) in the main
manuscript, most NBA samples do not match this rule, with
about 60 degrees of direction differences between these two
trajectory biases. We attempted to explain this phenomenon
by assuming that in NBA scenarios, where linear bases are
difficult to apply (due to the rapidly changing motion states
of the players and the intent of the game), there may actually
be three actual trajectory biases, and thus the best training
is achieved when these three biases vibrate at a 60-degree
difference from each other. However, two actual biases
were estimated simultaneously in self-biases or re-biases,
thus causing this vibration phenomenon with a 60-degree
difference between each other (as shown in Fig. 3). This
phenomenon still needs further study.

D. Further Discussions on Resonance Features
and Social Interactions

D.1. Distributions of Resonance Features

In the main manuscript, we have analyzed resonance fea-
tures of different neighboring agents j relative to the ego i
and have observed a clear tendency to describe all neighbors
in distinct groups. However, analyzing high-dimensional
features using the energy metric results in a large amount
of information loss and only partially reflects their nature.
In Fig. 5, we use PCA (Principal Component Analysis) to
reduce the dimension of each f i←j , thus further visualiz-
ing how they distribute in the feature space. It can be seen
that agents with similar motion states share closer features.
Meanwhile, agents with similar features may probably be-
have as groups in real scenarios, like the group {0, 1, 2, 5,
6} in Fig. 5 (a) and {0, 1, 4, 5} in Fig. 5 (b), independent of
their relevant positions (since the relative positional infor-



mation has been detached in these features, see the original
Eq. (9)). It is worth noting whether or not following a group
is actually an important social event and has been studied a
lot by previous researchers like GroupNet [20]. The pro-
posed Re could learn such behaviors without constructing
graph structures and human annotations, further verifying
our thought that social interactions are associated with the
spectral properties of trajectories.

Also, we can see from Fig. 5 that agents with different
preferences could be distinguished, like bikers {6, 7, 9, 11}
and {8} owns remarkable differences to other pedestrians in
Fig. 5 (c). This means that the proposed Re has the ability
to learn different social responses of the same ego agent to
neighbors with different states. It also indicates that Re has
learned social behaviors that are not limited to finding or lo-
cating which neighbors have similar spectral characteristics
to itself, but focuses more on those with different spectrums
to itself, like the feature distances between group {0, 1, 2,
5, 6} and others in the feature space in Fig. 5 (a). Thus,
our assumptions about the social resonance can be veri-
fied, which regards that social interactions are associated
with the spectral properties of trajectories, and it could pro-
duce the maximum effects when the trajectory spectrums of
a neighbor and the ego agent both cover some common fre-
quency bands (i.e., higher spectral similarities) or no spec-
tral overlap at all (i.e., have a longer feature distance in the
feature space).

D.2. Resonance Features and Neighbor Positions
As described in the original Eq. (9), the relative positional
information of all neighbors relative to the ego agent has
not been considered in resonance features. In other words,
we regard the resonance features to represent the pure spec-
tral properties of agents’ trajectories, since it can easily
be verified that a positional offset introduces more low-
frequency (or base frequency) interference into the corre-
sponding spectrum for the linear transform T we used. In-
stead, in the original Eq. (11), we encode the corresponding
positional information outside from the resonance feature
f i←j as the f i←j

p . In our main manuscript, we have used
term c(x, y|Xm) to verify how the resonance feature and
the positional information collaborate to modify the final
predicted trajectories:

Define the set of observed trajectories of all agents as
X = {Xi|1 ≤ i ≤ Na}, and the computation of a predic-
tion network as N (·), its prediction for the ith ego agent can
be represented by

Ŷi :=
(
p̂i
th+1, ..., p̂

i
th+tf

)⊤
= N (X ). (3)

Considering a manual neighbor [17], i.e., a neighbor with
manually set observed trajectories and has been put manu-
ally into the prediction scene, located at (x, y) with the pure

trajectory Xm, we denote the newly predicted trajectory af-
ter applying the intervention do(X = X ∪{Xm+(x, y)⊤})
as

Ŷi :=
(
p̂
i

th+1, ..., p̂
i

th+tf

)⊤
= N (X ). (4)

Then, the absolute trajectory modification c(x, y|Xm)
caused by the new trajectory Xm + (x, y)⊤ is defined as

c(x, y|Xm) = max
th+1≤t≤th+tf

∥∥∥p̂i

t − p̂i
t

∥∥∥ . (5)

This is actually an intervention to verify the model’s ability
to represent causalities [5] between social interactions and
predicted trajectories. If the model cannot represent such a
causal relationship, then the predicted trajectories may not
change no matter how much the new neighbor changes.

Such modification describes how the originally predicted
trajectories are modified by additionally considering a new
neighbor agent and potential socially interactive behaviors
with it. For clarity, we abbreviate such modifications as so-
cial modifications in the following sections. Thus, by manu-
ally moving (translating) the trajectory Xm to any position
(x, y) around the ego agent, we can verify how the reso-
nance feature describes a neighbor with different positions
relative to the ego agent. Spatial distributions of c(x, y|Xm)
corresponding to more structured manual trajectories (Xm)
are attached in Fig. 6, which represent how resonance fea-
tures (how the manual trajectory is structured) and posi-
tional information (where the manual neighbor is located,
and its relative position to other neighbors) collaborate to
modify the original forecasted trajectories.

D.3. Additional Discussions on Social Modifications
The above trajectory modification c(x, y|Xm) could repre-
sent how a trajectory prediction model responds to change
its predictions as a consideration of social interactions. Nat-
urally, the representation of social behaviors can be con-
sidered better when such social modifications of a model
are more sensitive and consistent with human intuitions.
Fig. 7 presents the spatial distribution of social modifica-
tions c(x, y|Xm) obtained from one of the current state-of-
the-art approaches SocialCircle[17], which is proposed to
mainly focus on social interactions among agents.

Comparing Fig. 7 and Fig. 6, it can be seen that So-
cialCircle fails at capturing the state of this manual neigh-
bor, especially how its trajectory is structured. For exam-
ple, the spatial distribution of social modifications is almost
the same across Fig. 7 (a1), (a2), and (a3), even though
the trajectories of these manual neighbors are totally dif-
ferent. On the contrary, the proposed Re could better cap-
ture their differences through the resonance features, better
seen by comparing Fig. 6 (b2) (b5) v.s. Fig. 7 (b1) (b3)
that share the same prediction situation. It can be seen that
the former pair present totally different social responses, es-
pecially to the left side of the ego agent, while the other
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Figure 6. Spatial distribution P (c(x, y|Xm)) of more structured of manual neighbors of the proposed Re model.
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Figure 7. Spatial distribution P (c(x, y|Xm)) of more structured
of manual neighbors of SocialCircle[17] model.

pair shares almost the same spatial distribution. In addi-
tion, the differences of social modifications on different ego
agents provided by the SocialCircle is also relatively small,
while those Re ones could better describe such interaction
differences, better seen by comparing Fig. 6 (a5) and (b5)
that present an almost completely opposite spatial distribu-
tion. Therefore, we can conclude that the proposed Re could
better capture the fine-level interaction differences among
different egos and neighbors, thus forecasting better social-
aware trajectories.

E. Additional Ablation Studies

In the main manuscript, we have made ablation variations
to verify the effect of different trajectory biases in the pro-
posed Re. However, due to the page limitations, some other
hyperparameters, like the number of waypoints Nway , the
number of angle partitions Nθ, or the transform T , have not
been validated, since they are set following the experimental
results of former researches [16, 17, 19]. Here, we conduct
several ablation variations and report their corresponding
ablation results. Please note that these validations are only
to determine the parameter choices since these parts are not

the main contributions of the proposed Re.

E.1. Ablation: Spectrums and Transform Types
Our core idea is to forecast trajectories as different vibration
portions and regard that social interactions are associated
with the spectral properties of agents’ trajectories. Natu-
rally, we need to use some transform to get trajectory spec-
trums. The Fourier transform and its variations have been
used in a wide variety of fields. E-V2-Net [19] applies dis-
crete Fourier transform (DFT) and discrete Haar transform
to obtain trajectory spectrums so that the trajectories can be
predicted hierarchically via different spectral components.

According to their experimental results, Haar transform
has better time efficiency than DFT, and it could also bet-
ter describe signals with rapidly changing characteristics
(with a relatively lower Vanishing Moment). Thus, we
choose Haar transform to obtain trajectory spectrums in
this manuscript. We have also conducted several ablation
experiments to verify its usefulness compared to the non-
transform ones and the DFT, whose results are reported in
Tab. 2. We can see that the Haar variation b2 obtains the
best performance across these ETH-UCY sets, compared to
whether DFT variation b1 or the non-transform variation
b3. Especially, such performance enhancements appear to
be more effective on FDE, with about 6.5% better average
FDE than variation b1, and about 5.4% better than variation
b3. Such experimental results verify the usefulness of the
Haar transform. Since we are not the first to work on fore-
casting trajectories with Haar transforms, we think this part
of the analysis is not the necessary for the main manuscript.

E.2. Ablation: the Number of Waypoints Nway

We regard self-bias as roughly reflecting agents’ intention
changes or random behaviors on limited waypoints rather
than the whole prediction period. Our idea is to reduce
the computational load by such an operation and improve
the network’s generalization to prevent it from overfitting
to some training samples when forecasting agents’ random
behaviors. According to previous research [12, 16], a too-
low waypoint setting may lead to the loss of the accuracy of



ID T eth hotel univ zara1 zara2

b1 DFT 0.240/0.359 0.112/0.174 0.258/0.459 0.181/0.306 0.137/0.237
b2 Haar (default) 0.232/0.354 0.103/0.152 0.242/0.414 0.172/0.290 0.131/0.225
b3 None 0.238/0.364 0.111/0.178 0.248/0.436 0.177/0.302 0.138/0.237

Table 2. Ablation studies on transforms used to obtain trajectory spectrums, including Haar (default), DFT, and none transform.

ID Nway eth hotel univ zara1 zara2

c1 2 0.249/0.384 0.104/0.153 0.276/0.475 0.181/0.301 0.137/0.234
c2 3 0.236/0.362 0.102/0.150 0.253/0.446 0.178/0.299 0.131/0.223
c3 4 (default) 0.232/0.354 0.103/0.152 0.242/0.414 0.172/0.290 0.131/0.225
c4 6 0.229/0.356 0.102/0.154 0.250/0.441 0.182/0.310 0.135/0.229
c5 12 0.237/0.378 0.104/0.155 0.245/0.437 0.180/0.307 0.134/0.232

Table 3. Ablation studies on the number of waypoints Nway when forecasting self-biases.

intention prediction, and conversely, a too-high setting may
limit the ability of prediction models to forecast stochastic
trajectories. Tab. 3 reports the ablation results on changing
the Nway . It can be seen that Re obtains the best average
performance when setting Nway to 4. Also, the usage of
waypoints is not our main contribution. Thus, this ablation
table is not included in the main manuscript.

E.3. Ablation: Social-Interaction-Representation
One significant concern is representing agents’ interaction
context when making predictions. Its core is to properly
share motion status with all neighboring agents. In Re,
we use the resonance feature f i←j to represent the single-
directional relationship caused by a neighbor j onto the ego
agent i. Then, the angle-based resonance gathering is used
to gather features into the ego agent as the final social inter-
action representation, i.e., the resonance matrix Fi

R. This
information-gathering approach is inspired by the previous
work SocialCircle [17]. We have also conducted ablation
studies to verify its effectiveness to other social-interaction-
representation approaches, including the Social Pooling [1],
graph convolutional network [7], and the vanilla SocialCir-
cle. Results are reported in Tab. 4.

E.4. Ablation: the Number of Angle Partitions Nθ

Like SocialCircle [17], we use an angle-based resonance
gathering method to gather all neighbors’ resonance fea-
tures in each angle-based partition. According to their ex-
perimental results, setting Nθ = th may obtain the best pre-
diction performance. Here, we conduct ablation variations
to verify how the number of partitions Nθ affects model
performance. Results are reported in Tab. 5. We observe
that Re obtains the best performance when setting Nθ = 8
(= th), indicating similar conclusions of angle-based par-
titions in SocialCircle. Also, the angle-based partitioning
is only used to gather resonance features, which is not the
main concern of this manuscript. Thus, these results are

only used as a reference for parameter selection.

F. Further Discussions on the Vehicle Dataset
The proposed Re model is designed to forecast pedestrian
trajectories. Furthermore, we now discuss and analyze its
prediction performance quantitatively and qualitatively on
the large-scale vehicle dataset nuScenes [2, 3] collected in
urban cities. We split 550/150/150 scenes to train/test/val
only on vehicles, under (th, tf ,∆t) = (4, 12, 0.5) [8, 13].
This section further discusses how Re works to forecast ve-
hicle trajectories, especially the usefulness of the vibration-
like trajectory prediction strategy.

F.1. Quantitative Analyses
As shown in Tab. 6, we observe that Re achieves an im-
pressive performance compared to the state-of-the-art meth-
ods. Especially, Re outperforms the newly published model
SoperModel by 42.9%/40.6% ADE/FDE when generating
5 trajectories while the improvement in FDE even reaches
as high as 60.3% when generating 10 trajectories. In
addition, compared to the pedestrian-focused SocialCir-
cle, Re obtains about 8.8%/7.8% ADE/FDE improvements
when generating 10 trajectories. Nevertheless, Re loses
about 1.0% FDE compared to the state-of-the-art vehicle-
centric MUSE-VAE, but it obtains better performance when
only generating 5 fewer trajectories for each ego agent, with
about 8.7%/6.2% better performance. Also, in Tab. 7, varia-
tions present similar trends like those on NBA, reported the
original Tab. 4, that Re perform even worse when adding
linear bases in the final predictions. Variations a7 to a9 ex-
hibit performance drops of up to 7.6%/12.9%, which are
rarely seen in ETH-UCY and SDD. Nevertheless, vibra-
tions (self-biases and re-biases) could still help to improve
the performance (variation a6), especially compared to the
SocialCircle variation a5. Similar to our conclusion in the
main manuscript, though the assumption that linear base
serve as the final reference points may not apply to the ve-



ID Interaction Representation eth hotel univ zara1 zara2

d1 Social Pooling 0.243/0.376 0.107/0.166 0.256/0.461 0.183/0.312 0.138/0.242
d2 GCN 0.240/0.272 0.107/0.164 0.253/0.448 0.179/0.311 0.133/0.230
d3 SocialCircle 0.238/0.370 0.112/0.181 0.252/0.444 0.180/0.303 0.139/0.241
d4 Resonance Gathering (Ours) 0.232/0.354 0.102/0.152 0.242/0.414 0.172/0.290 0.131/0.225

Table 4. Ablation studies on the usages of different social interaction representations when forecasting re-biases.

ID Nθ eth hotel univ zara1 zara2

e1 1 0.237/0.363 0.102/0.153 0.246/0.419 0.181/0.313 0.137/0.238
e2 2 0.222/0.391 0.103/0.156 0.246/0.419 0.181/0.310 0.144/0.248
e3 4 0.232/0.350 0.101/0.154 0.250/0.416 0.179/0.303 0.139/0.235
e4 8 (default) 0.232/0.354 0.102/0.152 0.242/0.414 0.172/0.290 0.131/0.225
e5 12 0.249/0.390 0.103/0.159 0.254/0.426 0.178/0.299 0.145/0.250
e6 16 0.253/0.391 0.104/0.160 0.252/0.429 0.178/0.295 0.146/0.247

Table 5. Ablation studies on the number of angle-based partitions Nθ when forecasting re-biases.

Method (nuScenes) best-of-5 ↓ best-of-10 ↓

Trajectron++[14] (2020) 3.14/7.45 2.46/5.65
Y-net[12] (2020) 2.46/5.15 1.88/3.47
SoperModel[22] (2025) 2.21/4.58 1.79/3.40
AgentFormer[23] (2021) 1.86/3.89 1.45/2.86
Dice[4] (2024) 1.76/3.70 1.44/2.67
AgentFormer-FLN[21] (2024) 1.83/3.78 1.32/2.73
E-V2-Net[19] (2023) 1.46/3.18 1.15/2.37
SocialCircle[17] (2024) 1.44/3.10 1.13/2.30
MUSE-VAE[8] (2022) 1.38/2.90 1.09/2.10

Re (Ours) 1.26/2.72 1.03/2.12

Table 6. Comparisons to other state-of-the-art methods on
nuScenes. Metrics reported are “ADE/FDE” in meters under best-
of-5 and best-of-10.

hicle scenes, vibrations and their sampled trajectory-biases
still work continuously. These results validate the competi-
tiveness of Re, even in vehicle scenarios.

F.2. Qualitative Analyses

According to results in the original Figs. 7 and 8 in the
main manuscript, or the above Fig. 4, we conclude that self-
biases are better at capturing intention changes or random
path choices, represented as an additional vibration vertical
to the direction of motion, while re-biases capturing social
modifications as a vibration alongside the motion direction.
As shown in Fig. 8, we observe that self-biases and re-biases
vibrate in a different way when forecasting vehicle trajecto-
ries from those presented in pedestrian datasets. It can be
seen that self-biases now describe how ego vehicles’ veloc-
ities would change, while re-biases describe whether they
would turn in the future. For example, Fig. 8 (a1) to (a5)
indicate that different forecasted self-biases own different
velocities (among K = 10 random predictions), while they
are almost distributed in the same direction, different from

those in pedestrian cases. Also, the forecasted re-biases in-
dicate whether the vehicle will change its direction in the
future (like to make a turn at an intersection in Fig. 8 (b2)
and (b4)). This phenomenon demonstrates the adaptability
and effectiveness of the proposed vibration-like prediction
strategy in capturing and predicting vehicle trajectories. In
particular, the difference in trajectory biases between pedes-
trian data and vehicle data further illustrates the adaptability
of the proposed Re to learn to fit trajectories according to the
properties of ego agents.

Please note that the proposed Re currently uses only ob-
served trajectories (ego and neighbors) to predict future tra-
jectories and does not include other kinds or modals of ob-
servations, which leads to its shortcomings in forecasting
vehicle trajectories, like not being able to observe lane posi-
tions (which are already widely used by existing vehicle tra-
jectory prediction methods [15]), etc. Therefore, although
it shows the potential for vehicle trajectory prediction, the
current approach is more applicable to pedestrian agents.
We will try to adapt it in the future to better suit vehicle
prediction scenarios.

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 961–971, 2016.

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-



ID l ∆s ∆r nuScenes ↓

a1 ✓ × × 3.48/7.93
a2 ✓ ✓ × 1.26/2.36
a3 × × SC 1.09/2.30
a4 × × Re 1.04/2.16
a5 × ✓ SC 1.06/2.24

ID l ∆s ∆r nuScenes ↓

a6 × ✓ Re 1.03/2.12
a7 ✓ × SC 1.13/2.45
a8 ✓ × Re 1.13/2.44
a9 ✓ ✓ SC 1.06/2.23

a0 (default) ✓ ✓ Re 1.05/2.17

Table 7. Ablation studies on nuScenes under best-of-10. “l”, “∆s”, “∆r” represent whether Ŷi
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