SignRep: Enhancing Self-Supervised Sign Representations

Supplementary Material

A1l. Human Pose Extraction

To extract human pose features, we utilize angles derived
from a human pose estimation model from [21]. We com-
pute the bone lengths for all instances in the YouTube-SL-
25 dataset (YT-SL) and select the median value as the stan-
dard bone length for each respective joint. This normal-
ization ensures that all individuals are represented with the
same body shape, thereby avoiding the leakage of person-
specific features when converting angles into 3D keypoints.

We visualize the resulting keypoints in Fig. 2, separat-
ing the hands from the body for easier identification of in-
dices. The left fingertips are defined using keypoint in-
dices {44,48,52,56,60}. For the fingertip distance ma-
trix, P14} these keypoints serve as the source, while in-
dices {40,41,44,45,48, 49,52, 53,56,57,60} are used as
the destination for computing the distance matrix. Simi-
larly, the same process is applied to the right hand using its
respective keypoint indices.

For the hand-interaction distance prior, plod} e
use the fingertip keypoint indices and the wrist key-
point ({40} for left wrist and {19} for right wrist)
as the source. The destination includes the set
of keypoint indices {0,3,6,7,10,13,15,16,17,18,19,
23,27,31,35,39,40,44, 48,52,56,60}, which represent
hands, face and body components. This matrix captures the
distances between key positions involved in interactions be-
tween the hands and the rest of the body.

Human pose estimations often exhibit jitter across
frames, which can affect temporal consistency. To miti-
gate this effect on the signer activity prior, P*t we de-
termine whether a hand is inactive by checking two con-
ditions: (1) its position is below the y-axis mean of key-
points {0, 3,6, 7}, and (2) the sum of the standard devia-
tions across time for all 21 visible hand keypoints is less
than 0.26. These criteria help identify inactive hands in the
presence of keypoint jitter.

A2. Pretraining Dataset Processing

For pretraining, we utilize the YT-SL dataset. We rely on
pose estimations to ensure that a signer is present in each
sequence, cropping the video to focus on the upper torso
before resizing it to 256 x 256.

To prevent data leakage, since WLASL also contains
YouTube videos, we ensure there is no overlap between the
videos in the WLASL and YT-SL datasets. This is achieved
by comparing the video IDs from WLASL with those in
the YT-SL dataset, ensuring that no videos that are in the
WLASL dataset are in our YT-SL pretraining data.

During pretraining, we randomly select 16 consecutive
frames from each video. For each batch, we randomly se-
lect two sequences from the same video, ensuring that each
batch contains a matching pair for the discriminator. These
steps are then used to train the SignRep framework.

A3. Implementation Details

As described in Sec. 7.2, we initialize the pretraining of our
SignRep framework using the video Hiera Base model, pre-
trained with MAE on Kinetics. The output dimension D
is 768, with a drop path rate of 0.1. The sign decoder’s
upsampler has a hidden dimension of 512 and the output
dimension D’ is set to 384.

Pretraining. During training, data augmentations include
Planckian Jitter [56], random resized cropping from 256 x
256 to 224 x 224, Gaussian blur and grayscale conversion.
The model is trained for 500,000 iterations with a batch of
20 and a masking ratio of 80% on a single NVIDIA 3090
GPU. A warmup over the first 50,000 iterations gradually
increases the learning rate to 1 x 10~% using the Adam op-
timizer [27], followed by cosine annealing decay. A layer-
wise learning rate decay [9] is applied with a factor of 0.85.

In Tab. 9, we list the hyperparameters used for the
weighting of the loss functions during pretraining. Addi-
tionally, we apply a scaling factor 9 to the target to balance
the target values.

Downstream Recognition. We use the same data aug-
mentation as pretraining and apply cross-entropy loss with
label smoothing of 0.1, with no patch masking applied, set-
ting x to 0.2 for the class distribution loss. The model is
trained with a batch size of 8 for 100 epochs, with 1000
iterations of warmup, followed by cosine annealing of the
learning rate, with a max learning rate of 1 x 10~ using the
Adam optimizer. The layer-wise learning rate decay factor
is 0.85.

For the Adam optimizer, we utilize the AdamW version
in Pytorch. We set the betas to (0.9, 0.95) and use a weight
decay of 0.5. To stabilize training, gradient clipping is ap-
plied with a maximum value of 1.0. During pretraining, the
model is evaluated with retrieval on WLASL validation set
every 25,000 iterations, the model achieving the best perfor-
mance on the retrieval task using the WLASL validation set
is selected for subsequent retrieval, recognition and transla-
tion tasks.
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Figure 2. Visualization of 3D keypoint extracted. Numbers alongside the nodes represent the keypoint indices. For visualization purposes,

we separate the left and right hand from the body.

Loss Components weighting w  scale ¢
Priors
body angles (wpis,a3) 10.0 1.0
left hand angles (wprw,a}) 10.0 1.0
right hand angles (wp{rm,qa}) 10.0 1.0
body kpt. (wpis,ry) 10.0 1.0
left hand kpt. (wprw,xy) 10.0 2.0
right hand kpt. (wpirm,x}) 10.0 2.0
body dist. (wps,a3) 20.0 1.0
left hand dist. (wpr,a3) 20.0 4.0
right hand dist. (Wp(r#.a) 20.0 4.0
signer activity (Wp ;) 0.2 -
Regularizations

variance (Wyar) 1.0 -
covariance (Weoy) 0.004 -
adversarial style (w,gy) 2.0 -

Table 9. Hyperparameters for weighting factors for the different
loss components used during pretraining of SignRep.

Downstream Translation. For the downstream transla-
tion task, we use Phoenix14T, CSL-Daily and How2Sign.
Phoenix 14T [6] is a German Sign Language (DGS) dataset
consisting of weather forecast broadcasts with aligned sign
and text translations. CSL-Daily [54] is a daily con-
versational Chinese Sign Language dataset recorded in a
lab setting, covering various everyday interaction topics
such as family life, shopping, travel and banking services.
How2Sign [13] is an American Sign Language (ASL)

dataset that provides parallel signed video and text trans-
lations of instructional videos across a broad range of cate-
gories.

For a fair comparison, we use the open-source code from
[49] for Phoenix14T and CSL-Daily and follow [43] for
How2Sign, applying the same hyperparameters specified in
their respective papers. This ensures that improvements
stem from our learned representations rather than differ-
ences in training configurations.

A4. Discriminator Setup

In Sec. 5.2, the discriminator determines whether the output
features 2% share the same style as a given style represen-
tation z°%'¢, This process ensures that the representation en-
coder fe,. learns style-agnostic representations, for robust
and generalizable features.

The discriminator model is designed as a lightweight
MLP-based architecture. To address the relatively small
magnitude of the style representation values, z*¥'¢, we first
scale these values by a factor of 100.0. The scaled style rep-
resentation is then passed through a two-layer MLP with a
hidden size of 768, which transforms it to match the dimen-
sionality of z®%. Layer normalization is applied after this
transformation. Next, the transformed 2% is concatenated
with z*'# and fed into a four-layer MLP with a hidden size
of 768 and an output size of 1. This MLP is responsible for
determining whether the representation of z*# aligns with
the style 2*%'. Spectral normalization is incorporated into
this final MLP to stabilize discriminator training. All lin-
ear layers, except the final linear layer, are followed by the
GELU activation function.

Matched and unmatched style samples for training the



discriminator are constructed from items within the batch.
For each item in the batch, its matching styles are derived
from its paired sample described in Sec. A2, while un-
matched pairs are randomly selected from the remaining
batch items. This setup ensures that the discriminator learns
to distinguish between matching and non-matching styles
effectively.

The discriminator is trained using binary cross entropy
loss to predict 0’s for unmatched styles and 1 for matched
styles. We use a learning rate of 1 x 10~%, with a warm-
up period of 50,000 iterations and cosine annealing decay.
The Adam optimizer is used with betas (0.5,0.9) and a
weight decay of 1 x 1073, An exponential moving aver-
age with an update momentum of 0.1 is used to compute
the expected outputs of a matched style E,.v®(¢q) and un-
matched style E,.y®(g). The discriminator is trained si-
multaneously with the SignRep representation model.

AS. Class Probability Distribution

To create the class distribution ¢, we utilize the
temperature-scaled distribution described in Sec. 6. Our
goal is to avoid excessively weak low-confidence probabili-
ties and overly strong high-confidence probabilities, thereby
achieving a smoother loss function L.

For each class, we select a temperature 7 such that
the scaled distribution softmax(¢./7) yields a maximum
class probability as close as possible to, but still below, 0.5.
Here, ngSC represents the inter-class cosine similarity for class
c. We determine the appropriate 7 by iterating over values
in the interval [0.001, 0.1] and selecting the temperature that
produces ¢, satisfying max(¢$.) < 0.5 while being nearest
to 0.5. We repeat this process for every class to obtain the
final class distribution ¢.

A6. Inflated Patch Embeddings

To accommodate a 64-frame input without increasing the
number of tokens processed during the downstream recog-
nition task, we employ inflated patch embeddings as de-
scribed in Sec. 7. This method preserves computational
efficiency while capturing temporal relationships in the
data. The pretraining is conducted on continuous sign data,
whereas the downstream task involves isolated signs, which
are temporally less dense. To address this discrepancy, we
adapt the patch embeddings by inflating their temporal com-
ponents, ensuring the preservation of temporal relations.

The original patch embeddings are defined with a kernel
size of (3,7,7), astride of (2,4, 4), and padding of (1, 3, 3).
These parameters are updated to a kernel size of (7,7,7), a
stride of (8, 4,4), and padding of (3, 3, 3). This adjustment
allows for better modeling of the temporal relationships re-
quired for sign recognition without adding more patch to-
kens.

To ensure compatibility and preserve the pretrained
weights, we employ a zero-initialization approach. The new
kernel weights are first initialized to zero. Then, weights
from the original patch embedding are mapped to the new
kernels by transferring the weights from kernel indices
{0, 1,2} to indices {1, 3,5} in the temporal dimension, re-
spectively. This method ensures that the pretrained infor-
mation is preserved during downstream initialization.

A7. Qualitative Retrieval

We show qualitative results of the pretrained SignRep
model on the three downstream recognition datasets, ASL-
Citizen in Fig. 3, NMFs-CSL in Fig. 4 and WLASL in
Fig. 5. We note that the retrieved results are generated using
the pretrained model, which has neither been fine-tuned on
the downstream recognition task nor exposed to the down-
stream video dataset during pretraining. We display the top-
3 closest retrieved video segments for randomly selected
reference video segments with active signers. The results
show that the model effectively retrieves segments with sim-
ilar hand shapes, poses and motions, highlighting its ability
to capture meaningful sign-related features during pretrain-
ing.

AS. Limitations

Our model is pretrained on Youtube-SL-25, which carries
inherent limitations in terms of signer diversity, language
distribution and skin tone representation. These factors may
affect the quality and generalizability of the learned rep-
resentations. Additionally, our method focuses solely on
manual sign features, leaving room for future improvements
by incorporating non-manual components such as facial ex-
pressions and mouthing patterns. While our approach elim-
inates the need for keypoints during downstream tasks, the
pretraining process still relies on keypoint-based supervi-
sion, which may be affected by low-quality detections. To
mitigate this, we leverage a human pose estimation model
specialized for sign language [21]. Furthermore, we filter
out keypoints with confidence scores below 50% and mask
missing keypoints in the loss function. These adjustments
are advantageous over methods relying on keypoints as in-
puts.

Our model learns individual sign representations using
a 16-frame window. Future work could explore extending
this to longer temporal windows. However, doing so would
require careful modifications to prevent excessive compu-
tational overhead, as increasing the number of frames also
increases token complexity. Alternatively, our model can
serve as a lightweight feature extractor for learning inter-
sign relationships and long-range temporal dependencies in
a more efficient manner.



Top 3 Retrieved Video Segments on ASL-Citizen
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Figure 3. Qualitative results for ASL-Citizen for retrieval based on features extracted from the pretrained SignRep. Given the reference
sequence (Ref.), the Top-3 most similar videos are retrieved based on the cosine similarity of the output representations. M1 denotes the
closest match, M2 is the second closest match and M3 is the third closest match.



Top 3 Retrieved Video Segments on NMFs-CSL
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Figure 4. Qualitative results for NMFs-CSL for retrieval based on features extracted from the pretrained SignRep. Given the reference
sequence (Ref.), the Top-3 most similar videos are retrieved based on the cosine similarity of the output representations. M1 denotes the
closest match, M2 is the second closest match and M3 is the third closest match.



Top 3 Retrieved Video Segments on WLASL
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Figure 5. Qualitative results for WLASL for retrieval based on features extracted from the pretrained SignRep. Given the reference
sequence (Ref.), the Top-3 most similar videos are retrieved based on the cosine similarity of the output representations. M1 denotes the
closest match, M2 is the second closest match and M3 is the third closest match.



