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This document offers theoretical justification and imple-
mentation of CPF, pseudo-code of CPF, additional experi-
mental results, further qualitative analysis, comprehensive
implementation details and extensive dataset information.
The structure is organized as follows:
• §1 Theoretical justification and implementation of CPF
• §2 Pseudo-code of CPF
• §3 More experimental results
• §4 More qualitative analysis
• §5 More implementation details
• §6 Summary of data split statistics

1. Theoretical Justification and Implementation
of CPF

The chain rule of probability universally decomposes any
joint probability into a product of conditional and marginal
probabilities [3]: p(a, o|x) = p(a|o, x)p(o|x) (or sym-
metrically p(a, o|x) = p(o|a, x)p(a|x)). In CZSL, the
choice to decompose p(a, o|x) as p(a|o, x)p(o|x) (rather
than p(a|x)p(o|x) or p(o|a, x)p(a|x)) is driven by seman-
tic and contextual dependencies: (i) the independence as-
sumption p(a)p(o) fails to capture semantic binding [4, 10],
whereas the conditional probability explicitly models plau-
sible attribute-object relationships. (ii) The semantic asym-
metry (established empirically by Nagarajan and Grauman
[9]) structurally favors p(a|o, x) over p(o|a, x), as objects
act as semantic anchors that causally determine plausible
attributes, whereas the inverse mapping p(o|a, x) is ill-posed
due to attribute-sharing across objects, violating injectiv-
ity for stable inference. In practical, we adopt the additive
formulation to address the practical issue of “probability
vanishing” inherent in multiplicative approaches.

2. Pseudo-code of CPF
Algorithm 1 provides the pseudo-code of CPF.

*Equal Contribution.
†Corresponding author: Xiankai Lu.

Algorithm 1 Pseudo-code of CPF in a PyTorch-like style.

"""
# v_h_c: deep-level class feature (1 x D)
# V_h_p: deep-level patch feature (HW x D)
# v_l_c: shallow-level class feature (1 x D)
# V_h_p: shallow-level patch feature (HW X D)
# W_a: attribute textual embedding (M x D)
# W_o: object textual embedding (N X D)
# W_f_o: projection matrix (D x d)
# W_f_a: projection matrix (D x d)
# D: visual feature dimension
# d: textual embedding dimension
"""

#======= text-enhaced object learning =======#
# projecting deep-level class feature into the

joint semantic space
v_h_c_d = v_h_c @ W_f_o
# compute similarity score
score_1 = torch.matmul(v_h_c_d, W_o.transpose()) /

torch.sqrt( torch.tensor(d))
# compute q_t with similarity score
q_t = F.softmax(score_1, dim=-1) @ W_o
# projecting deep-level patch feature into the

joint semantic space
V_h_p_d = V_h_p @ W_f_o
# compute attention score
score_2 = torch.matmul(q_t, V_h_p.transpose()) /

torch.sqrt( torch.tensor(d))
# compute object feature
v_o = v_h_c + F.softmax(score_2, dim=-1) @ V_h_p

#======= object-guided attribute learning =======#
# compute attention score
score_3 = torch.matmul(v_o, V_l_p.transpose()) /

torch.sqrt( torch.tensor(D))
# compute attribute feature
v_a = F.softmax(score_3, dim=-1) @ V_l_p

3. More Experiment Results

In this section, we present the ablation study on loss weight
coefficients α1 and α2 on UT-Zappos50K [12]. The results
are shown in Table 1. Additionally, we conduct ablation
experiments on block choices on UT-Zappos50K [12] to
select the most suitable blocks as shallow-level visual em-
beddings. The corresponding results are presented in Table 2.
Moreover, as shown in the Table 3, our CLIP-based CPF
consistently outperforms other methods on MiT-States and
UT-Zappos50K.



Table 1. Ablation study on loss weight coefficients α1 and α2 on
UT-Zappos50K [12].

UT-Zappos50K
α1 α2 AUC↑ HM↑ Seen↑ Unseen↑
0.0 0.0 28.5 45.1 56.4 60.9
0.3 0.7 39.2 53.3 65.3 71.3
0.4 0.6 39.3 53.4 64.3 72.5
0.5 0.5 40.1 55.3 65.6 69.4
0.6 0.4 41.4 55.7 66.4 71.1
0.7 0.3 40.0 54.5 66.0 69.3

Table 2. Ablation study on block choices on UT-Zappos50K [12].

UT-Zappos50K
Setting Blocks AUC↑ HM↑ Seen↑ Unseen↑

Close
World

(1,4,7) 38.3 52.4 65.5 71.1
(2,5,8) 39.2 53.6 65.3 71.7
(3,6,9) 41.4 55.7 66.4 71.1

Open
World

(1,4,7) 28.8 45.6 64.1 52.3
(2,5,8) 29.0 46.2 65.3 51.0
(3,6,9) 31.2 47.6 64.6 56.1

Table 3. Results of CLIP-based CPF on MiT-States [6] and UT-
Zappos50KK [12].

UT-Zappos50K MiT-States
Method AUC↑ HM↑ AUC↑ HM↑

CDS-CZSL [7] 39.5 52.7 22.4 39.2
Troika [5] 41.7 54.6 22.1 39.3
PLID [1] 38.7 52.4 22.1 39.0

CAILA [13] 44.1 57.0 23.4 39.9
Ours 45.2 57.6 23.2 40.5

4. More Qualitative Analysis

We provide more qualitative results of UT-Zappos50K [12],
MIT-States [6] and C-GQA [8] under CW and OW settings in
Fig. 5. We show results for each dataset in each row. Images
predicted under the CW setting are shown in the first three
columns and the rest of the columns show the instances under
the OW setting. In Fig. 1, we provide attention visualization
for Eq. 2 and Eq. 4. In Fig. 2, we illustrate qualitative results
of image retrieval. In Fig. 3, we show additional wrong
predictions of instances in C-GQA [8].

Figure 1. Attention visualizations for Eq. 2 and Eq. 4

Figure 2. Qualitative results of image retrieval

Figure 3. More qualitative results of wrong predictions of instances
in C-GQA [8].

5. More Implementations Details
We provide the implementation details of deep-level and
shallow-level feature extraction in Fig. 4.

Figure 4. Implementation details of deep-level and shallow-level
visual embeddings for both ViT-B and CLIP.

6. Summary of Data Split Statistics
Following previous work [2, 11], we provide the summary of
data split statistics for UT-Zappos50K [12], MIT-States [6]
and C-GQA [8] in Table 4. |A| and |O| represent the num-
bers of attribute and object classes, respectively. |Cs| and



Figure 5. More qualitative results of UT-Zappos50K [12], MIT-States [6] and C-GQA [8].

Table 4. Summary of data split statistics.
Composition Train Val Test

Datasets |A| |O| |A| × |O| |Cs| |X | |Cs| / |Cu| |X | |Cs| / |Cu| |X |
UT-Zappos50K 16 12 192 83 22998 15 / 15 3214 18 / 18 2914

MIT-States 115 245 28175 1262 30338 300 / 300 10420 400 / 400 12995
C-GQA 413 674 278362 5592 26920 1252 / 1040 7280 888 / 923 5098

|Cu| denote the numbers of seen and unseen composition cat-
egories, respectively. |X | indicates the numbers of images.
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