A. Implementation Details

A.l. Preliminaries: TRELLIS

We begin by briefly reviewing the TRELLIS [79] model on which our model is based. We chose TRELLIS because it is the
state-of-the-art image-to-3D generator when we explored the task, and it is publicly available. However, our design is not
specific to this model. TRELLIS is a conditional 3D diffusion model that performs denoising in a sparse 3D latent space.
First, it introduces a transformer-based variational autoencoder (VAE) (€, D), where the encoder £ maps sparse voxel features
to structured latents z, and the decoder D converts them into desired output representations, including 3D Gaussians [30],
radiance fields, and meshes. In particular, a 3D object o; is encoded using its structured latent variables (SLAT) defined
as z = {(zi,pi)}le, where z; € R is a local latent feature attached to the voxel at position p; € {0,1,...,N — 1}3,
N is the spatial resolution of the grid, and L < N3 is the number of active voxels intersecting the object’s surface. This
representation encodes both coarse geometric structures and fine appearance details by associating local latents with active
voxels.

TRELLIS comprises two diffusion models, one to predict the active voxel centers {p;}X; (stage 1) and the other to
recover the corresponding latents {z;}% ;| (stage 2). Each model can be viewed as a denoising neural network vy operating
in a latent space £, and trained to remove Gaussian noise € ~ (0, I) added to the latent code, i.e., £() = (1 — )£ + te,
where ¢t € [0, 1] is the noise level [42]. The denoising network vy is trained to minimize the flow loss:
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where z is the conditional input. In stage 1, the latent code is a compressed version of the N x N x N occupancy volume,
where the spatial resolution is reduced from N = 64 to » = 16. Hence, in this case, the latent vector is a matrix £ € RL xC’
of I = r® = 4096, C’-dimensional tokens. In stage 2, the latent code £ = {zi}iL:1 € RL*C is a matrix of L, C-dimensional
tokens, where L is now the number of active voxels. Similar transformers are implemented to the corresponding denoising
networks vy (Fig. 3). The conditioning image  is read via cross-attention layers that pool information from the tokens cgino
extracted by DINO [53] from the image .

Given the active grid {p; } X ,, the local latents {z;}< | for each active voxel are predicted via iterative denoising using
model (A.1), and these are subsequently decoded by the VAE to produce high-fidelity 3D outputs. The active grid {p; }X£ |,
is obtained in a similar manner, denoising an (encoded and compressed versions of) the NV x N x N occupancy volume.

A.2. Network Design

We adopt the network design in TRELLIS [79] to load the pre-trained image-to-3D weights and integrate the mask-weighted
cross-attention mechanism to each DiT block (24 blocks in total). And each image-conditioned cross-attention layer is
immediately followed by an occlusion-aware cross-attention layer.

(a) Patchify and weight of visibility/occlusion mask The input condition image has a resolution of 512x512, which is
resized to 518 x518 to facilitate splitting into patches of size 14 x 14, as required by DINOv2 [52]. The resulting condition is
then flattened into a tensor €gjn, € R374X1024 where the sequence length corresponds to 37 x37 patches plus 1 CLS token
and 4 register tokens. To better align the visibility and occlusion masks with the DINOv2 features, we first split the masks
into patches of the same size, then calculate the weight score for each patch using Eq. 4 and Eq. 5. The final ¢,;s € R1374x1
and ¢, € R¥37X1 are obtained by flattening the weight scores, with a value of 1 assigned to the CLS and register token
positions.

(b) Occlusion-aware cross-attention layer. We set the feature dimension of the occlusion-aware cross-attention layers to
1024, matching that of the image-conditioned cross-attention layers. To maintain consistent dimensions, we replicate the
flattened occlusion masks to form a tensor €oce_stqer € RIS74X1024,

(c) Multi-head Cross-Attention. Our mask-weighted multi-head cross-attention (MHA) layer, which is implemented to
encourage the model to focus its attention on the visible parts of the object, is an extension of the cross-attention described
in the main paper. Specifically, H heads are run in parallel, resulting in H attention scores. For mask-weighted attention
mechanism, we impose c¢,;; simultaneously to each head:

Ay, = softmax(Sy, + log ¢yis), (A.2)
MHA = [Ajv; Asv;...; Agv] (A.3)



A.3. Training Details

(a) Pre-trained model loading. While TRELLIS is split into multiple modules, in our work we only train the sparse structure
flow transformer and the structured latent flow transformer (see the overview figure where the "fire” symbols indicate the
parts that are fine-tuned, and ’snowflake” symbols indicate that we directly use the pre-trained weights).

(b) Data Augmentation. As described in Sec. 3.3, we generate random masks during training for data augmentation. Specif-
ically, we begin by randomly drawing 1 to 3 lines, circles, and ellipses in the mask image. Next, to ensure these regions
connect — thereby better simulating real-world occlusions, where mask regions are typically not highly fragmented — we
randomly add 3 to 7 rectangular regions that have undergone an expansion operation. This results in a stable masking of the

objects in the training data. Example inputs are presented in Fig. A.1.
[

Original image Masked image Occlusion mask

Figure A.1. Examples of random mask generation. The visible areas are shown in white, occluded areas in gray and background in
black.

A 4. Inference Details

(a) 3D-consistent mask ratio. For the multi-view 3D-consistent masks described in Sec. 3.3, we set the mask ratio to a
random number between 0.4 and 0.6 for each object, which results in a variety of reasonable mask areas.

(b) Time consumption. Despite the introduction of additional cross-attention layers, our inference time remains comparable
to that of the baselines. Amodal3R can generate and render each object in under 10 seconds.
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Occluded input GaussianAnything [36] Real3D [27] TRELLIS [79] Amodal3R (Ours)

Figure A.2. Examples using occluded images directly as the input of baseline models.



B. Experimental Details

B.1. Evaluation Protocol

We evaluate the results using Google Scanned Objects (GSO) (1,030 objects) [16] and a randomly sampled subset of Toys4K
[67] containing 1,500 objects. Here, we provide additional details regarding the computation of our evaluation metrics.

(a) Rendering quality and semantic consistency alignment To assess overall rendering quality, we compute the Fréchet
Inception Distance (FID) [21] and Kernel Inception Distance (KID) [3]. Moreover, we evaluate semantic consistency using
the CLIP score [57] by measuring the cosine similarity between the CLIP features of each generated image and its corre-
sponding ground truth. For each object, we render 4 views using cameras with yaw angles of {0°, 90°, 180°, 270°} and a
pitch angle of 30°. The camera is positioned with a radius of 2.0 and looks at the origin with a FoV of 40°, consistent with
TRELLIS [79]. While FID and KID are calculated between the ground truth and generated sets (6,000 images for Toys4K
and 4,120 images for GSO), the CLIP score is calculated in a pair-wise manner, and we report the mean value to evaluate
semantic consistency.

(b) Geometry quality For 3D geometry evaluation, we adopt Point cloud FID (P-FID) [49], Coverage Score (COV), and
Minimum Matching Distance (MMD) using Chamfer Distance (CD). Following previous work [36, 49, 79], we sampled
4096 points from each GT/generated point cloud, which are obtained from the unprojected multi-view depth maps using the
farthest point sampling.

C. More Results

In this section, we provide additional qualitative examples and comparison results to further demonstrate the performance of
our Amodal3R.

C.1. Baselines using occluded input

We have stated in the main paper that ”occluded images will lead to incomplete or broken structures” in current 3D generative
models. Here, we provide examples where pix2gestalt is omitted and the occluded images are directly used as the input. As
shown in Fig. A.2, when baseline models receive images of partially visible objects as input, they often fail to recover
complete and intact 3D assets.

C.2. More single-view to 3D examples

Due to the page restriction, we only provide limited examples in the main paper. Here we visualize more examples of single-
view to 3D to further demonstrate the effectiveness of our method in Fig. D.4. The results show that compared with the 2D
amodal completion + 3D generation baselines, our Amodal3R yields higher quality 3D assets across multiple categories.

C.3. More multi-view to 3D examples

We first provide visualized examples to explicitly explain the difference between the “pix2gestalt” and “pix2gestalt + MV”
settings in the multi-view to 3D generation in Fig. C.3. For the “pix2gestalt” setting, we directly implement pix2gestalt for
the amodal completion independently under each view. For the “pix2gestalt + MV setting, we first choose the view with the
greatest visibility from the 4 occluded views, then use pix2gestalt to complete the object (which is shown in the pix2gestalt
column in the qualitative result), and subsequently use Zero123++ to get the 4 consistent views as the input of LaRa and
TRELLIS. It can be observed that pix2gestalt alone results in obvious multi-view inconsistency, while with Zero123++ the
consistency is significantly improved, thus leading to better 3D generation quality.

More multi-view to 3D examples are provided in Fig. D.5, where our Amodal3R again generates 3D assets with better
quality than the baselines.

D. Discussion, Limitation, and Future Work

While Amodal3R achieves impressive 3D amodal completion, it comes with several limitations we hope to solve in the
future. 1) Dataset expansion. Due to the computational resources limitation, Amodal3R is trained on very limited data,
consisting of only 20,627 synthetic 3D assets, predominantly confined to the furniture category. Consequently, completions
on some complex or out-of-distribution objects may fail or lead to unrealistic structures. We believe that training on larger
datasets, e.g. Objaverse-XL [15], could mitigate these issues. 2) Real-World data adaptation. Different from pix2gestalt,
Amodal3R is trained exclusively on synthetic data. As a result, it cannot leverage environmental cues and must rely solely on
the visible portions of occluded objects for reconstruction. Creating real-world 3D modal datasets will further enhance the
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pix2gestalt [54] + Zero123++ [61]
Figure C.3. Example of “pix2gestalt” and ‘“‘pix2gestalt + M'V”’ input of multi-view to 3D evaluation.

ability to apply models to real scenes. 3) Controllable completion. Currently, how objects are completed is entirely up to
the model itself and lacks control. Therefore, to further enhance the model to accept additional conditions, such as text, and
allow users to edit and control the style of the completion process will be an important research direction for us in the future.
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Occluded input pix2gestalt [S4] GaussianAnything [36] Real3D [27] TRELLIS [79] Amodal3R (Ours)

Figure D.4. Additional single-view to 3D comparison examples. The occluders are shown in black and the visible regions are highlighted
with red outlines.
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Occluded input pix2gestalt [54] LaRa [6] LaRa [6] (+MV) TRELLIS [79] TRELLIS [79] (+MV) Amodal3R (Ours)

Figure D.5. Additional multi-view to 3D comparison examples. The occluders are shown in black and the visible regions are highlighted
with red outlines.
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Figure D.6. Additional diverse examples. The occluders are shown in black and the visible regions are highlighted with red outlines.
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Input image  pix2gestalt [54] TRELLIS [79] Amodal3R (Ours)

Figure D.7. Additional in-the-wild examples compared with pix2gestalt + TRELLIS. The target objects and occluders are marked with
the red and green outlines.
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Input image

Figure D.8. Additional in-the-wild examples. The target objects and occluders are marked with the red and green outlines.



Input image Reconstruction result

Figure D.9. Additional in-the-wild examples. The target objects and occluders are marked with the red and green outlines.



