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1. Settings001

In this section, we elaborate on the technical details of An-002
imateAnyMesh. The chapter is structured into three main003
components: data curation 1.1, implementation details 1.2,004
and evaluation metric 1.3.005

1.1. Data Curation006

As described in the main paper, our curated 4D data is007
sourced from three primary sources: Objaverse [3, 9],008
AMASS [8], and DT4D [5]. Initially, we filter and extract009
all .glb files containing animation sequences from Obja-010
verse. Using Blender’s Python API (bpy), we convert each011
animation into a mesh sequence. Animations with fewer012
than 16 frames are discarded, and each sequence is capped013
at 200 frames. Post-conversion, each animation is encoded014
into a .bin file comprising D ⊂ {F ∈ RM×3, V ∈015
RT×N×3}, where M denotes the face count, T represents016
the temporal length of the dynamic mesh sequence, and N017
indicates the vertex count. Similarly, we develop scripts to018
convert SMPL [7] models from AMASS and .anime files019
from DT4D into the identical .bin format.020

Subsequently, we traverse all stored files, implement-021
ing vertex merging operations for duplicate vertices while022
updating the corresponding face information. This serves023
two purposes: data optimization and, crucially, support-024
ing DyMeshVAE’s encoding process, which embeds vertex025
connectivity information to prevent trajectory inconsisten-026
cies during decoding.027

The processed dynamic mesh files undergo temporal028
slicing with window sizes T = 16 and T = 32. To maxi-029
mize data utilization, we initiate slicing from both frame 0030
and T//2, storing T-frame segments sequentially. We also031
preserve reverse-ordered sequences as independent files, ef-032
fectively augmenting the dataset by 3-4×. Each new se-033
quence undergoes center normalization, positioning the ini-034
tial frame at the origin with maximum vertex absolute val-035
ues normalized to 1.0.036

Post-slicing, we implement motion-based filtering, elim-037

inating sequences with inter-frame maximum absolute dif- 038
ferences outside the range [0.01, 0.5]. We also filter out 039
the instances whose faces/vertices ratio exceeds 2.5. The 040
cleaned data is then rendered using bpy scripts to generate 041
frontal video sequences. We apply uniform gradient color- 042
ing (purple-red) and consistent top-down point lighting, uti- 043
lizing the Cycles engine for 256× 256 resolution rendering 044
on CPU clusters. 045

For caption generation, we employ Qwen-2.5-VL [1] as 046
our annotation model with the prompt: “Describe the mo- 047
tion of the object in a sentence.” The generated captions are 048
stored alongside their corresponding .bin files. 049

Finally, we validate all processed files, removing exam- 050
ples with anomalous vertex or face shapes. The resulting 051
DyMesh dataset is partitioned into subsets based on maxi- 052
mum vertex counts (4,096/8,192/50,000) to facilitate train- 053
ing and testing across different configurations. 054

1.2. Implementation Details 055

In the DyMeshVAE architecture, both encoder and decoder 056
utilize attention mechanisms with a hidden dimension of 057
512. For temporal settings of T=16 and T=32, we em- 058
ploy latent dimensions of 32 and 64 channels respectively 059
for VAE sampling, with both configurations containing ap- 060
proximately 25M parameters. The Shape-Guided Text-to- 061
Trajectory Model consists of 12 stacked transformer blocks 062
as shown in Fig. 4 of the main paper, where each block in- 063
corporates 8-head attention layers with features projected 064
to 512 dimensions, totaling approximately 200M param- 065
eters. We also conduct scaling experiments with an en- 066
hanced architecture of 740M parameters, comprising 24 067
transformer blocks, 16 attention heads per layer, and a 068
1024-dimensional latent space. During training, we im- 069
plement an efficient batchify strategy where each sample’s 070
vertices and faces are padded to maintain uniform tensor di- 071
mensions across the batch: vertex tensors are padded with 072
zero vectors (0.0, 0.0, 0.0) up to the dataset’s maximum ver- 073
tex count, while face indices are padded with invalid indices 074
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t = t1 t = t2 t = t3 t = t4 t = t1 t = t2 t = t3 t = t4

Figure 1. Examples of dynamic mesh sequences in our DyMesh dataset.

(-1, -1, -1) to reach the maximum face count (defined as 2.5075
times the maximum vertex count), enabling consistent batch076
processing while preserving mesh topology integrity. Dur-077
ing inference, we perform rectified flow sampling using 64078
uniformly sampled timesteps within the [0,1] interval.079

1.3. Evaluation Metrics 080

For quantitative evaluation, we employ three standardized 081
metrics from VBench [4] to assess the performance of 082
comparative methods: I2V Subject Consistency, Motion 083
Smoothness, and Aesthetic Quality. Specifically, I2V Sub- 084
ject Consistency is computed by measuring the frame-wise 085
similarity of DINO [2] features, quantifying the visual co- 086
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num v 4,096 8,192 16,384 32,768

t (s) 3.95 5.99 10.68 21.86

Table 1. Inference time evaluation. num v represents the number
of mesh vertices. We sample 1/8 number of vertices in the FPS
sampling procedure as default. All these testing is conducted on a
single Nvidia A800 GPU.

herence between the generated video and the reference im-087
age. Motion Smoothness is evaluated through the AMT [6]088
video interpolation framework, which assesses the temporal089
continuity and fluidity of the generated motion sequences.090
The Aesthetic Quality metric leverages the LAION aes-091
thetic predictor to quantify the perceptual quality and artis-092
tic value of individual frames from a human-centric per-093
spective. These complementary metrics provide a compre-094
hensive evaluation of both temporal consistency and visual095
fidelity of the generated results.096

For our user study protocol, we recruit 20 participants097
from diverse backgrounds and age groups to evaluate com-098
parative methods through a controlled assessment. We ran-099
domly selected 10 diverse test cases and generated motion100
sequences for each using all comparative methods based on101
text prompts, rendering each result from four orthogonal102
viewpoints and concatenating them temporally (16×4 = 64103
frames). The results from all methods were randomly shuf-104
fled and horizontally concatenated into 64-frame GIFs, with105
participants rating each result on a 5-point Likert scale (5:106
excellent, 1: poor) across three criteria: text-motion align-107
ment, motion plausibility, and shape preservation fidelity.108
The final evaluation scores were computed by aggregat-109
ing and de-shuffling ratings across all participants, with110
failed generations being handled by computing means from111
successful cases only, ensuring a comprehensive and unbi-112
ased assessment of perceptual quality and semantic accu-113
racy. All the User Study source videos can be found in the114
User Study folder of the supplementary materials.115

The inference efficiency of our framework scales with116
both mesh complexity (vertex/face count) and FPS fea-117
ture sampling density. Our empirical studies indicate that118
an 8:1∼4:1 ratio between vertex count and FPS samples119
achieves optimal performance-efficiency trade-off. The cor-120
responding inference times across different mesh resolu-121
tions under this sampling configuration are presented in122
Tab. 1.123

2. Animation Results of AnymateAnyMesh124

We curated a diverse collection of high-fidelity static125
meshes from Sketchfab [9], encompassing various cat-126
egories including humanoid figures, animals, weapons,127
clothes, and environmental assets. These meshes were an-128
imated using our proposed AnimateAnyMesh framework129

through text-driven synthesis. Fig. 3 demonstrates repre- 130
sentative results, showcasing our framework’s capability to 131
generate high-fidelity, versatile animations across arbitrary 132
mesh topologies. The qualitative results validate the effec- 133
tiveness of our approach in achieving generalized mesh ani- 134
mation with exceptional geometric fidelity, motion natural- 135
ness, and semantic flexibility. 136

Moreover, given identical input prompts and initial mesh 137
as condition, our AnimateAnyMesh framework demon- 138
strates robust multi-modal synthesis capabilities through 139
different random seeds, generating diverse yet plausible 140
high-fidelity mesh animations. Fig. 4 illustrates this gen- 141
erative flexibility through exemplar results, highlighting our 142
framework’s ability to explore varied motion manifestations 143
while maintaining semantic consistency and geometric in- 144
tegrity. 145

3. Additional Qualitative Comparison 146

For a comprehensive comparison of mesh animation ap- 147
proaches, we present additional comparative examples 148
against baseline methods in Fig. 5. The results consistently 149
support our main findings, demonstrating that our approach 150
outperforms existing methods in terms of text-motion align- 151
ment, motion naturalness, and shape preservation fidelity. 152

4. Additional Ablation Studies 153

GT 1/32 1/16 1/8 1/4

Figure 2. Ablation study on FPS Sampling Ratio. The numerical
annotations above each image indicate the FPS ratio employed in
the DyMeshVAE Encoder. Please zoom in for a better view.

FPS Sampling Ratio. We conduct ablation study on the 154
sampling ratio in the DyMeshVAE encoding procedure to 155
see how it influences the reconstruction quality. We ran- 156
domly sampled three dynamic mesh sequences from the 157
DyMesh dataset with vertex counts of 369, 2,567, and 158
6,890 (top to bottom). For each mesh, we conducted exper- 159
iments using FPS (Farthest Point Sampling) ratios of 1/32, 160
1/16, 1/8, and 1/4 for feature sampling and reconstruction. 161
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num v
FPS Sampling Ratio

1/32 1/16 1/8 1/4

369 136.57 58.78 22.45 8.10
2,567 17.74 3.64 1.16 0.54
6,890 1.57 0.66 0.51 0.50

Table 2. Reconstruction error for dynamic mesh sequences with
varying vertex counts under different FPS sampling ratios.

The qualitative visualizations and quantitative metrics are162
presented in Fig. 2 and Tab. 2, respectively, demonstrating163
the impact of sampling density on reconstruction fidelity.164

As demonstrated in Fig. 2, meshes with low vertex165
counts (row 1st) exhibit poor reconstruction quality even166
with a 1/4 sampling ratio, while high-vertex-count meshes167
(row 3rd) maintain satisfactory reconstruction fidelity even168
at a 1/32 sampling ratio, as validated by quantitative metrics169
in Table 3. We attribute this phenomenon to spatial distri-170
bution characteristics: low-vertex meshes typically exhibit171
sparse spatial distribution, leading to significant geometric172
information loss in regions surrounding unsampled vertices,173
whereas high-vertex-count meshes maintain dense surface174
coverage even with lower sampling ratios, enabling better175
preservation of local geometric features during encoding.176
Based on these observations, we set the feature sampling177
count to 512 during training to facilitate efficient batch pro-178
cessing while achieving an optimal balance between perfor-179
mance and computational efficiency across meshes with di-180
verse vertex counts. During inference, we adopt an adaptive181
sampling strategy where n = min(512, num v//8) for infer-182
ence, where num v represents the number of mesh vertices.183
We empirically find the robust performance across the ma-184
jority of test cases with this setting.185

5. Scaling Experiments186

In this section, we conduct scaling experiments across187
three dimensions: dataset scale, temporal resolution (frame188
count), and model capacity. We evaluate four configu-189
rations, each denoted as rf < 1 > v < 2 > f < 3 > p,190
where 1, 2, 3 represents the maximum number of vertices191
of the dataset, number of frames per instance, and the num-192
ber of parameters of the Shape-Guided Text-to-Trajectory193
Model. All models were trained for 600,000 iterations on194
corresponding DyMesh subsets with a batch size of 2048195
and a learning rate of 2e-4. For evaluation, we gener-196
ate mesh animations using the same 10 mesh-prompt pairs197
from our qualitative benchmark, maintaining consistent ran-198
dom seeds across all models. Front-view renderings were199
produced to compute the VBench [4] metrics (I2V, M.Sm,200
Aest.Q) discussed in the main text. Additionally, given that201
all four trained models demonstrate the capability to gen-202
erate high-quality and semantically plausible mesh anima-203

Experiment I2V ↑ M.Sm ↑ Aest.Q ↑ Dy.Dg ↑
A rf 4096v 16f 200Mp 0.954 0.995 0.539 0.693
B rf 8192v 16f 200Mp 0.985 0.996 0.550 0.605
C rf 4096v 32f 200Mp 0.948 0.993 0.532 0.737
D rf 4096v 16f 740Mp 0.968 0.997 0.545 0.705

Table 3. Scaling experiments of AnymateAnyMesh. We name
the experiments as rf < 1 > v < 2 > f < 3 > p, where 1, 2, 3
represents the maximum number of vertices of the dataset, number
of frames per instance, and the number of parameters of the Shape-
Guided Text-to-Trajectory Model.

tions, we incorporate the Dynamic Degree metric (abbrevi- 204
ated as Dy.Dg) from VBench to quantitatively assess mo- 205
tion intensity. The comprehensive results are presented in 206
Tab. 3. The results indicate that: (1) Increasing the max- 207
imum number of vertices leads to better performance on 208
most metrics (B vs. A). (2) Increasing the number of frames 209
will improve the output dynamic, improving Dy.Dg while 210
maintaining promising results on other metrics. (C vs. A). 211
(3) Scaling the model’s parameter size leads to better per- 212
formance on all metrics, demonstrating good scalability of 213
our method. (D vs. A). 214

6. Limitation 215

Our work exhibits three limitations: First, regarding dataset 216
scale, while the proposed DyMesh Dataset encompasses 217
over 4M dynamic mesh sequences, the number of unique 218
mesh identities remains below 100k, potentially limiting 219
model generalization across specialized categories. We plan 220
to address this by creating and curating additional high- 221
quality, diverse 4D datasets. Second, concerning annota- 222
tion quality, we observe that current video captioning mod- 223
els demonstrate suboptimal performance when annotating 224
3D rendered sequences without natural backgrounds, com- 225
pared to their performance on natural videos, particularly in 226
motion description granularity. Enhancing caption fidelity 227
for synthetic 3D content remains a key research direction. 228
Third, in terms of model capabilities, the current implemen- 229
tation of AnimateAnyMesh is confined to 16/32-frame se- 230
quence generation, and extending the model’s capability to 231
generate longer-duration mesh animations represents a sig- 232
nificant future research objective. 233
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The dinosaur is roaring The man is leaning forward The spider is jumping

The skeleton is walking The animal is raising arms The character is turning around

The skeleton is wandering The clothes is stretching The objects are moving

The man is raising his arms The sword is swaying The helmet is flying

Figure 3. Examples of text-driven mesh animation results of the proposed AnimateAnyMesh. We render two random views for each
example. Please zoom in for a better view.
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“The girl is dancing.”

“The girl is walking.”

Frame 0 seed = s1 seed = s2 seed = s3

Figure 4. Diversity Demonstration of AnimateAnyMesh Generations. Given identical text-prompt and initial mesh conditions, Ani-
mateAnyMesh demonstrates the capability to generate diverse, high-quality mesh animations through random seed variation.
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“The clown toy is moving.”

“The monster is flying.”

“The woman is bending knees.”

Input DG4D L4GM Animate3D Ours
t = t0 t = t1 t = t2 t = t1 t = t2 t = t1 t = t2 t = t1 t = t2

“The dog is jumping.”

Figure 5. Additional qualitative comparison with state-of-the-art mesh animation methods.
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