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1. Network Structure

In the section, we provide the architectures of the encoder
and the decoder for mask prediction network (MPNet) and
video completion network (VCNet) in Tab.1 and Tab.2, re-
spectively.

Table 1. The architecture of the encoder. We use “same padding”
for each convolution layer, and ReLU is added to the end of each
convolution layer.

Stage Output Input Architecture
MPNet

E1 1 3× 216× 120 3× 432× 240 DWT

E1 2 64× 216× 120 3× 216× 120
3× 3 conv

ReLU

E1 3 64× 216× 120 64× 216× 120

3× 3 conv
ReLU

3× 3 conv

× 2

E2 1 64× 108× 60 64× 216× 120 DWT

E2 2 128× 108× 60 64× 108× 60
3× 3 conv

ReLU

E2 3 128× 108× 60 128× 108× 60

3× 3 conv
ReLU

3× 3 conv

× 2

VCNet

E1 1 64× 432× 240 3× 432× 240
3× 3 conv

ReLU

E1 2 64× 432× 240 64× 432× 240

3× 3 conv
ReLU

3× 3 conv

× 5

E2 1 64× 216× 120 64× 432× 240 DWT

E2 2 128× 216× 120 64× 216× 120
3× 3 conv

ReLU

E2 3 128× 216× 120 128× 216× 120

3× 3 conv
ReLU

3× 3 conv

× 5

E3 1 128× 108× 60 128× 216× 120 DWT

E3 2 256× 108× 60 128× 108× 60
3× 3 conv

ReLU

E3 3 256× 108× 60 256× 108× 60

3× 3 conv
ReLU

3× 3 conv

× 5

2. About Dataset

In Tab. 3, we provide a detailed comparison between the
datasets used to train the non-blind baselines [12–16] and
those used to train our BVINet. From the table, we can

Table 2. The architecture of the decoder. Similar to the encoder,
we also use “same padding” for each convolution layer, and ReLU
is added to the end of each convolution layer.

Stage Output Input Architecture
MPNet

D1 1 64× 216× 120 128× 108× 60
Upsample(2)
3× 3 conv

ReLU

D1 2 64× 216× 120 64× 216× 120

3× 3 conv
ReLU

3× 3 conv

× 2

D2 1 64× 432× 240 64× 216× 120
Upsample(2)
3× 3 conv

ReLU

D2 2 64× 432× 240 64× 432× 240

3× 3 conv
ReLU

3× 3 conv

× 2

D2 3 1× 432× 240 64× 432× 240
3× 3 conv
Sigmoid

VCNet

D1 1 128× 108× 60 256× 108× 60
3× 3 conv

ReLU

D1 2 128× 108× 60 128× 108× 60

3× 3 conv
ReLU

3× 3 conv

× 5

D2 1 128× 216× 120 128× 108× 60 IDWT

D2 2 64× 216× 120 128× 216× 120
3× 3 conv

ReLU

D2 3 64× 216× 120 64× 216× 120

3× 3 conv
ReLU

3× 3 conv

× 5

D3 1 64× 432× 240 64× 216× 120 IDWT

D2 2 64× 432× 240 64× 432× 240

3× 3 conv
ReLU

3× 3 conv

× 5

D2 3 3× 432× 240 64× 432× 240
3× 3 conv

ReLU

observe that: 1) Existing datasets typically use pixel value
0 to fill the corrupted regions, treating it as the corrupted
content. 2)They often employ static, fixed-shape masks or
target masks with relatively simple motion to define the cor-
rupted regions. 3) There is a clear boundary between the
corrupted and valid regions. In this way, the synthesized
corrupted video inherently introduce specific prior knowl-
edge, such as content, border, and shape. These priors make
corrupted regions easily locatable from video frame by a
deep neural network or even a simple linear classifier, re-
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Table 3. Comparison with related datasets in video inpainting.
“Syn” and “Real” denote synthesized and real-world.

Methods Content Shape Border Syn Real

VINet [1, 2] 0 fixed clear
FGVC [3] 0 fixed/object clear

CPVINet [4] 0 fixed clear
STTN [5] 0 fixed/object clear

FuseFormer [6] 0 fixed/object clear
E2FGVI [7] 0 fixed/object clear

FGT [8] 0 fixed/object clear
ProPainter [9] 0 fixed/object clear

DiffuEraser [10] 0 fixed/object clear
WaveFormer [11] 0 fixed/object clear

Ours image free-form strokes blur

sulting in the blind video inpainting task being degraded
into a non-blind category [17]. In contrast, our customized
dataset employs free-form strokes with varied shapes and
complex motions as the corrupted regions, fills real image
patches as the corrupted content, and utilizes iterative Gaus-
sian smoothing [18] to blur the boundaries. Such strategy
effectively simulates the blind video inpainting setting. In
addition, we also collect 1, 250 bullet removal video clips
in a real-world scenario.

3. More Results on Synthesized Dataset
In addition to Section 4 of the main paper, we provide more
results obtained using the proposed methods in Fig. 1. As
can be observed, our method can obtain spatial-temporally
consistent inpainted results without any mask annotations.

4. More Results on Real Cases
Subtitle removal is one of the important applications of
blind video inpainting. To verify the effectiveness of our
method, we use state-of-the-art two methods as our base-
lines to evaluate the blind video inpainting ability of our
model, including one non-blind image inpainting method
GNet [19], one video restoration method RAVUNet [20].
To ensure the fairness of the experimental results, these
baselines are fine-tuned on our subtitle removal dataset
using their released models and codes. Fig· 2 com-
pares the results of bullet removal between OGNet [19],
RAVUNet [20], and our method. As shown in Fig. 2, our
method effectively eliminates bullets in videos without the
need for any mask annotations, and generates better details
than the baselines.

5. User Study
To provide a comprehensive comparison, we conducted a
user study to evaluate the inpainting results. we invite 15
volunteers and present them 5 diverse inpainted video. In
each trial, the inpainting results of different models are
shown to volunteers, and the volunteers are required to
choose the best one. The results are summarized in Fig. 3.

It is evident that the volunteers show a clear preference for
our inpainted results compared to other competitors.

6. More Results on MPNet
Some examples of corrupted regions predicted by our MP-
Net are shown in Fig. 4. As revealed in Fig. 4, the cor-
rupted regions predicted by the full MPNet model are closer
to ground-truth. This demonstrates that the effectiveness of
MPNet.
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Figure 1. Some example of inpainting results with our method. The top row shows corrupted video frame. The completed results are
shown in the bottom row, where green box denotes the mask generated by the model.
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Figure 2. Qualitative results of subtitle removal. Better viewed at
zoom level 400%.
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Figure 3. User preference results.
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Figure 4. Example of corrupted regions predicted by our MPNet.
Better viewed at zoom level 400%.
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