
A. Experimental Details
In this section, we disclose the details of our experimental
evaluations regarding the specific computational resources
utilized, including hardware, memory, and time consumption.
All our experimental evaluations are all conducted on GPU
compute units equipped with an 11th Gen Intel(R) Core(TM)
i9-11900K CPU, a single NVIDIA GeForce RTX 4090 GPU,
and 128 GB of onboard memory.

For dSVA with DINO, MAE, and the vanilla supervised
ViT-B/16 at a stride of s = 16, as well as for all compared
generative attacks (CDA, BIA), generator Gθ is trained on
the entirely of the ImageNet training set for one epoch with
a batch size of 32. Under this setup, single model variants of
dSVA require up to 4 hours of training, a duration compa-
rable to previous methods. For the joint variant, i.e., dSVA
(Joint), batch size is set to 22, where its training takes up to
7 hours to complete. Our proposed additional exploit of self-
attention (which is optional) in dSVA does not increase the
training time. The inference time for the adversarial genera-
tor is comparable to, if not faster than, that of gradient-based
iterative adversarial attacks. For all settings, GPU memory
utilization approximates to over 90%. We organize the rest
of the experimental details in Tab. 3, which includes ViTs
with stride of s = 8 that we use in sections that report results
of cross-domain transferability.

Attack Stride s
Batch
Size

GPU
Memory

Training
Time

dSVA (DINO) 16 32 > 90% ~4 hours
dSVA (DINO) 8 12 > 90% ~13 hours
dSVA (MAE) 16 32 > 90% ~4 hours
dSVA (MAE) 8 12 > 90% ~13 hours
dSVA (Joint) 16 22 > 90% ~7 hours
dSVA (Joint) 8 6 > 90% ~25 hours

Table 3. Computational resource details of our experiments.
We report the computational details of all variants of dSVA with
different ViT configurations that we evaluate.

B. Results of Cross-domain Transferability
In this section, we provide supplemental experimental results
on the cross-domain transferability of dSVA in both coarse
and fine-grained classification tasks. The evaluations follow
the baseline settings specified in previous work [71]. For
coarse-grained classification, we evaluate both attacks on tar-
get black-box domains, namely, CIFAR-10, CIFAR-100 [32],
SVHN [42], and STL-10 [12], with the same models. For
fine-grained classification, we report black-box transferabil-
ity across three fine-grained domains: CUB-200-2011 [59],
Stanford Cars [31], and FGVC Aircraft [37]. For each do-
main, we evaluate against three black-box ConvNets with
ResNet-50 (Res-50), SENet154, and SE-ResNet101 (SE-

Attack s A

Domain

CIFAR-
10

CIFAR-
100

SVHN STL-
10

CDA (VGG-19) / / 12.65 30.79 3.36 7.56
CDA (Res-152) / / 10.34 28.23 5.49 6.15
CDA (Den-169) / / 27.42 53.22 6.84 10.31
BIA (VGG-19) / / 39.04 68.25 6.38 9.84
BIA (Res-152) / / 26.24 49.36 3.75 7.35
BIA (Den-169) / / 22.05 45.82 12.79 10.75

dSVA (DINO) 16 w/o 13.98 37.67 12.88 11.07
dSVA (DINO) 8 w/o 24.05 53.00 6.54 11.18
dSVA (DINO) 16 w/ 13.34 37.42 9.30 12.66
dSVA (DINO) 8 w/ 21.94 48.94 7.53 10.70
dSVA (MAE) 16 w/o 16.89 35.80 6.80 10.41
dSVA (MAE) 8 w/o 24.77 41.15 9.13 10.26
dSVA (MAE) 16 w/ 17.47 34.32 4.91 9.31
dSVA (MAE) 8 w/ 24.30 44.61 6.74 11.44
dSVA (Joint) 16 w/o 23.64 50.28 8.94 11.04
dSVA (Joint) 8 w/o 26.87 55.53 8.83 12.42
dSVA (Joint) 16 w/ 21.56 43.25 8.82 11.89
dSVA (Joint) 8 w/ 24.13 46.73 11.73 11.95

Table 4. Transferability towards coarse-grained classification
domains. We report transferability (%) towards domains CIFAR-
10, CIFAR-100, SVHN, and STL-10. s is the stride of ViT-B/16.
A denotes whether attention regularization in dSVA is activated.

Res-101) backbones, trained using the DCL framework [10].

Table 4 showcases our findings on coarse-grained clas-
sification domain transferability. With the target models in
CIFAR-10 and CIFAR-100 being VGG-like architectures,
the BIA attack using a VGG-19 surrogate model unsurpris-
ingly yields superior results. Among the dSVA variants,
dSVA (Joint) with DINO and MAE at stride s = 8 ex-
cels, closely matching the baseline performance in these
domains. In contrast, for the SVHN and STL-10 domains,
dSVA variants outperform the baseline, with dSVA (DINO)
surpassing dSVA (Joint) in SVHN due to DINO’s sensitivity
to global shape and structure, which aligns with the focus of
the SVHN domain on house numbers (digit classification).
Interestingly, self-attention exploitation in dSVA does not
enhance performance in this coarse-grained context.

Turning to fine-grained classification transferability in
Tab. 5, dSVA (Joint) with active self-attention exploitation
leads in most scenarios, outperforming nearly all baselines
except when the target model is Res-50. Notably, dSVA
(DINO) outperforms the otherwise dominant dSVA (Joint)
variant in a specific case: attacking the Stanford Cars do-
main’s SE-Res-101 model.

Aggregating the results, we conclude that dSVA (Joint)
variant remains the most robust attack overall for even most
challenging cross-domain transfer scenarios, with the self-
attention exploitation proving beneficial in most cases.



Attack s A
CUB-200-2011 Stanford Cars FGVC Aircraft

Res-50 SENet154 SE-Res-101 Res-50 SENet154 SE-Res-101 Res-50 SENet154 SE-Res-101

CDA (VGG-19) / / 29.49 29.94 20.79 21.84 20.95 10.42 24.81 40.91 23.02
CDA (Res-152) / / 49.85 48.77 34.77 48.08 37.91 21.60 33.80 48.01 36.19
CDA (Den-169) / / 39.55 29.52 36.40 42.16 25.26 19.22 30.61 32.92 33.77
BIA (VGG-19) / / 62.21 52.78 36.84 70.93 37.01 29.86 82.61 51.17 51.27
BIA (Res-152) / / 63.53 68.15 38.92 56.91 58.49 19.03 41.52 77.61 42.33
BIA (Den-169) / / 83.36 65.75 45.77 91.67 51.75 52.57 96.16 59.78 65.22

dSVA (DINO) 16 w/o 38.86 51.65 43.66 53.57 59.22 50.79 72.52 81.45 64.73
dSVA (DINO) 8 w/o 71.18 61.15 59.57 49.39 59.76 56.23 54.38 77.71 67.96
dSVA (DINO) 16 w/ 41.55 49.48 47.75 47.01 51.25 47.23 53.57 61.83 66.10
dSVA (DINO) 8 w/ 33.68 40.99 38.12 33.78 37.92 29.92 37.12 46.25 55.68
dSVA (MAE) 16 w/o 42.93 51.81 37.56 28.80 47.10 20.24 34.13 50.62 43.86
dSVA (MAE) 8 w/o 37.38 58.97 36.44 44.28 38.30 26.74 29.70 50.10 36.58
dSVA (MAE) 16 w/ 60.08 63.80 42.42 41.22 62.48 26.79 38.81 72.95 57.45
dSVA (MAE) 8 w/ 42.38 62.11 41.99 46.04 38.99 29.33 30.41 52.90 43.73
dSVA (Joint) 16 w/o 78.77 79.62 66.11 48.67 68.47 51.97 65.65 89.24 83.15
dSVA (Joint) 8 w/o 62.58 72.17 59.11 41.42 55.68 41.17 46.76 75.07 63.62
dSVA (Joint) 16 w/ 76.44 79.64 69.72 47.29 67.91 50.99 68.94 89.93 77.37
dSVA (Joint) 8 w/ 70.88 78.85 68.24 47.25 66.30 50.12 68.15 87.97 74.10

Table 5. Transferability towards fine-grained classification domains. We report transferability (%) towards domains CUB-200-2011,
Stanford Cars, and FGVC Aircraft. s is the stride of ViT-B/16. A denotes whether attention regularization in dSVA is activated.

Attack Res-18 [48] Res-50 [63] ViT-B [39] Swin-B [39]
XCiT-S12

[13]

ViT-S
+ConvStem

[51]

ConvNeXt
+ConvStem

[51]

ConvNeXt-
v2+Swin-L

[3]

CDA (VGG-19) 7.13 8.25 6.09 10.15 7.91 6.69 4.96 5.68
CDA (Res-152) 12.56 11.39 12.31 13.20 10.74 7.39 7.04 7.07
CDA (Den-169) 11.21 12.54 9.96 16.38 13.93 10.33 8.19 8.89
BIA (VGG-19) 12.05 11.22 8.85 12.96 11.22 9.51 7.50 7.50
BIA (Res-152) 16.13 15.35 14.52 19.32 16.06 11.97 10.61 8.24
BIA (Den-169) 14.09 14.19 18.95 22.62 16.65 10.92 9.80 9.42

CDA (ViT-B/16) 12.39 13.04 8.85 18.70 14.52 11.39 9.00 8.67
BIA (ViT-B/16) 10.70 9.90 12.86 12.47 8.97 8.10 7.50 5.03
MI (ViT-B/16) 7.81 7.92 11.62 12.96 8.26 7.51 6.46 6.96
PNA (ViT-B/16) 7.13 8.58 10.79 14.06 8.03 7.98 6.11 7.71
TGR (ViT-B/16) 12.73 11.55 16.18 18.34 12.16 11.50 8.88 9.32
ATT (ViT-B/16) 12.22 12.05 17.70 19.19 12.04 11.27 8.65 10.49

dSVA (DINO) 20.88 19.47 23.93 26.28 21.49 15.96 12.80 11.67
dSVA (MAE) 15.11 14.69 14.52 18.46 15.94 11.50 10.04 10.39
dSVA (Joint) 19.19 19.64 21.44 24.45 22.31 14.79 12.11 11.99

Table 6. Additional transferability comparisons against models with defenses. We include additional comparisons in defense evasion
against various robust ConvNets, ViTs, and hybrid models equipped with state-of-the-art adversarial defenses.

C. Additional Comparisons of Transferability
to Defense Models

In this section, we present additional comparisons on the
transferability of dSVA to robust ConvNets, ViTs, and hy-
brid models with state-of-the-art defenses, which are lacking
in prior work. We report the results in Tab. 6, where the
citations accompanying the model names refer to the respec-
tive state-of-the-art adversarial defenses employed on the
model itself. Note that we here use the same experimental
setups as in Sec. 4, except for employing a larger ε = 16

constraint, otherwise the transferability across all evaluated
attacks would be too low to be comparable.

We observe that dSVA still consistently outperforms
the baselines across all models, averaging 17.04% black-
box transferability, even against the most resilient defenses.
dSVA (DINO) outperforms the joint variant in some cases,
indicating that the shape/structural features are more adver-
sarially impactful for robust models with smooth decision
boundaries. These remarkable results once again underscore
the robustness and effectiveness of our dSVA.



Figure 9. Visualizations of adversarial examples. We provide a few examples of side-by-side comparisons of the benign image, and
adversarial examples generated by the 3 variants of dSVA (DINO, MAE, Joint). Perturbation is scaled and normalized for better visualization.

D. Visualization of Adversarial Examples

In this section, we provide a few visual examples of the
adversarial examples and perturbations generated by dSVA.
Figure 9 showcases several instances of successful attacks
by the 3 variants of dSVA, namely, dSVA (DINO), which
emphasizes structural features; dSVA (MAE), which em-
phasizes textural features; and dSVA (Joint), which success-
fully attends to both aspects, from left to right respectively.
These visualizations highlight the rich, impactful perturba-
tions crafted by our method, demonstrating its remarkable
ability to exploit model vulnerabilities effectively.

E. Limitations and Future Work

While dSVA demonstrates impressive black-box transfer-
ability by exploiting self-supervised ViT features, we ac-
knowledge certain limitations in our current work and outline
potential avenues for future work.

Although dSVA shows strong transferability in a digital
settings, our current work lacks full-scale physical world
experiments. The potential of adopting generative adversar-
ial attacks for physical real-world scenarios is a complex,
challenging, yet valuable direction for future work.

Self-supervised methods with scaled training setups, such
as DINOv2, may offer potentially improved transferability
for dSVA. Additionally, investigating the use of ViTs with
registers, and considering the use of multiple layers during
adversarial optimization, could further enhance the effec-
tiveness and robustness of dSVA. These approaches could
lead to more effective adversarial attacks and are crucial
directions for future work.

We acknowledge the importance of ethical implications
of our work, as with all research in adversarial machine
learning. Future research will continue to explore the broader
societal impacts of adversarial attacks and contribute to the
development of more robust and secure AI systems.


