A. Details of CAORL

Prompts of context augmentation. The complete prompt
of context augmentation scheme is illustrated belows.

Instructions

Your role is to serve as a policy model for tool
planning. Given a task and a set of tools, you need to
select some tools and determine the execution plan of
tools that can be executed in sequential or parallel to

solve the task. Your goal is to generate the tool
plans that can optimize the task performance while
minimizing the execution costs.

Tool Information

Each tool has its own functionality. Executing a tool
will incur some execution costs. Besides, the costs of
each tool may vary based on the size of inputs. The
following are the embedding features of each tool:

[Tool 1 Embeddings], ..., [Tool N Embeddings]
Tool Cost Information
The cost features of each tool are as follows:

[Tool 1 Cost Embeddings], ..., [Tool N Cost Embeddings]

Task Specifications and Input Attributes

Next, you will receive information about the task and
the attributes of the current inputs.

Task specifications: Given an low-resolution blurry
image, how to return a regular image?

Task input Attributes: {’has_image’: true, ’image_size
: (520, 780), ’'has_text’: false, ’'text_length’: None}.
Now please generate a tool plan.

Learning algorithms. The details of the decision trans-
former [8] based learning algorithm in CAORL are de-
scribed as follows. Formally, the LLM takes the historical
return, state, and action sequences to predict the next action:

LLM(aAI; {Ri,msi,w,ai,w,-n ,Ri,si}), (Al)
where R;,s;,a; represent the return, state and action at
timestep ¢, respectively. Z denotes the input context de-
scribed in Figure 4 and §3.2.1, while parameter w defines
the context window to facilitate the LLM to learn the action
distribution. The rationale behind this algorithm is to train
the LLM to learn the distribution of actions conditioned on
specific states and returns, enabling the LLM to generate ac-
tions to achieve the desired return after training [8, 53]. In
particular, during the inference stage, we specify a target re-
turn indicating the desired performance to trigger the LLM
to generate actions. In practice, we set the target return as
the maximum return observed in the training plan dataset.

Note that instead of directly feeding states, actions, and
returns into the LLM, we design three separate linear layers
to project them into embedding features, followed by layer
normalization [4]. Additionally, each embedding vector is
added with a learned positional embedding based on its cor-
responding timestep.

B. Details of OpenCATP

B.1. Tool Set

Following OpenAGI [15], the tools OpenCATP for task
solving consist of 10 open-source domain expert models of
different functions. These models include: sentiment anal-
ysis [3], text summarization [27], machine translation [41],
image classification [10], object detection [6], image col-
orization [62], image super-resolution [9], image denoising
[59], image deblurring [59] and image captioning [11].

B.2. Evaluation Tasks

As mentioned in §4, OpenCATP includes 87 sequential
tasks and 24 non-sequential tasks, each with 100 data sam-
ples. The sequential tasks in OpenCATP are constructed
from OpenAGI [15], one of the most popular LLM sequen-
tial tool planning datasets. As for non-sequential tasks,
we use the back-instruct method [46] for task construction.
Specifically, we construct diverse non-sequential tasks by
following steps: (1) create a tool graph based on the toolkit
and dependencies between tools; (2) extract a sub-graph
representing a non-sequential plan; (3) prompt the GPT-4
to generate the descriptions of a task that can be solved by
this plan. Table B.1 provides several concrete examples of
various types of tasks in OpenCATP.

B.3. Evaluation Metrics

Plan execution prices. OpenCATP utilizes execution
prices to comprehensively reflect the overall costs of tool
plans, inspired by the Function as a Service (FaaS) plat-
forms. FaaS is a category of cloud computing that charges
consumers in an event-driven manner, where consumers
only need to pay for the time and resources used to run
their functions, with no prices paid when the functions are
idle [44]. This “pay-as-you-go” model can result in signif-
icant savings, especially for applications with intermittent
usage or short-lived tasks, contributing to the market suc-
cess of FaaS. According to recent statistics [23], the global
market size of FaaS is estimated to be 17.70 billion USD in
2024 and will reach 44.71 billion USD by 2029.

To accurately charge consumers for running their func-
tions, FaaS platforms like AWS Lambda [26] have estab-
lished a mature pricing model based on execution time and
resource consumption. The effectiveness of this model has
been validated over years in the FaaS industry, which mo-
tivates us to adopt execution prices to represent the overall
costs of tool plans. Hence, we draw inspiration from the
AWS Lambda [26] and design a pricing model for running

Task Input Sample

Ground Truth Example Plan

Sequential Tasks

s o]

Image-in-Image-out
Task: Given a noisy
blurry grayscale image,
how to return the regular
image step by step?

Image Image
{ Denoising Deblurring H Colorization J

Image-in-Text-out Task:
Given a noisy blurry
grayscale image, how to
return the caption in
English step by step?

A woman stands in the dining (o 1 e coonen ||)

a
Denoising Deblurring Captioning

area at the table.

Image-in-Text-out Task:
Given a blurry image,
how to (1) return the
label of the image in
English, and (2) return
the caption of the image
in German step by step?

(1) Braunbir; (2) Ein kriftiger
Grizzly Bir ist im Hintergrund

Image
Classification
Dsblurring Image Machine
Captioning Translation

mit Gras zu sehen.

Image-in-Image-Text-out
Task: Given a blurry
noisy image, how to (1)
return the regular image,
and (2) return the label
of the image in German
step by step?

Image
Denoising

Image
Deblurring i
Classification

Machine
Translation

(2) Schaf.

Table B.1. Examples of the sequential and non-sequential tasks and their corresponding data samples in OpenCATP.

a tool as follows:
Chrice(t) = price_per_run + time

X (Cpucons X pricefcpucons (t)

+ CPUinst X Price_cplinst (B.1)

+ gPUcons X Price_gplcons (t)

+ gPUinst X price*gpuinst)
Here, time denotes the execution time in milliseconds
of tool t. cpucons (gPUcons) denotes the constant CPU
(GPU) memory consumption in MB required to load the
tool. cpuinst (gpuinst) denotes the instant CPU (GPU)
memory consumption in MB caused by the computation
of the tool. price_cpucons, Price_CPUinsts PriCE_gPUcons,
price_gpuinst calculate the prices in USD associated with
the respective memory consumptions. price_per_run de-
notes the prices in USD charged for each execution of the
tool. Table B.2 lists the settings of the pricing parameters”.

3Note that the existing FaaS platforms do not provide pricing strategy

Based on the tool prices, the execution prices of a tool
plan p are defined the sum of prices of each tool in the plan:

Cprice (p) = Z Cprice (t) (BZ)
t

Plan execution time. For a sequential plan, the execution
time is simply the sum of the execution time of each tool in
the plan. For example, for plan @ in Figure 1, the execution
time is 0.18 4 3.46 + 0.13 = 3.77(s). For a non-sequential
plan that can be executed in parallel, the execution time is
defined as the maximum of the sum of tool execution time
in each branch of the plan. For example, for plan @ in Fig-
ure 1, the execution time is max(0.18 +0.2940.16,0.18 +
0.09) = max(0.63,0.27) = 0.63 (s).

Task performance of plans. In OpenCATP, we mainly use
ViT scores [15] and BERT scores [63] to calculate the per-

for GPU resources. We then set the GPU prices as three times the CPU
prices, according to the article in https://news.rice.edu/news/2021/rice-
intel-optimize-ai-training-commodity-hardware

Notations Values ($)
price_per_run 2e-7
2.1e-9 if memory < 128MB
8.3e-9 if memory < 512MB
1.67e-8 if memory < 1024MB
2.5e-8 if memory < 1536MB
3.33e-8 if memory < 2048MB
Se-8 if memory < 3072MB
price_Cpucons 6.67¢-8 if memory < 4096MB
8.83e-8 if memory < 5120MB

le-7 if memory < 6144MB

1.167e-7 if memory < 7168MB
1.333e-7 if memory < 8192MB
1.5e-7 if memory < 9216MB
1.667e-7 if memory < 10240MB
price-cplinst 3.02e-14
6.3e-9 if memory < 128MB
2.49¢e-8 if memory < 512MB
5.01e-8 if memory < 1024MB
7.5e-8 if memory < 1536MB
9.99e-8 if memory < 2048MB
1.5e-7 if memory < 3072MB
price_gplcons 2.001e-7 if memory < 4096MB
2.499e-7 if memory < 5120MB

3e-7 if memory < 6144MB

3.501e-7 if memory < 7168MB
3.999¢-7 if memory < 8§192MB
4.5e-7 if memory < 9216MB
5.001e-7 if memory < 10240MB
price-gplinst 9.06e-14

Table B.2. Settings of the pricing parameters in Eq.(B.1).

formance scores of an executed tool plan on the target task.
Specifically, ViT scores are used for tasks that involve im-
age outputs, which measures the cosine similarity between
the image generated by the plan and the ground-truth image.
BERT scores are used for tasks that involve text outputs,
which measures the cosine similarity between the generated
texts and ground-truth texts.

Note that for non-sequential tasks requiring multiple out-
puts, we calculate the performance scores for each pair of
plan outputs and ground-truth outputs, then average these
scores to derive the final plan performance scores on the
tasks. In particular, if a model produces a sequential plan
for a non-sequential task (e.g., Figure 1®), we assign a 0
score for the missing output pair. For instance, the plan @
in Figure | will receive a 0 score for the caption output, as
it does not generate any captions.

C. Details of Experiments

C.1. Training and Testing Sets

For training sets, we select 2,760 and 480 samples from
OpenCATP for sequential and non-sequential planning, re-
spectively. As for testing sets, we select 720 and 480 sam-
ples from various tasks which are not present in the train-
ing sets for the evaluation of sequential and non-sequential
planning, respectively.

C.2. Implementation of CATP-LLM

The details of implementing CATP-LLM on OpenCATP
platform in the experiments are described as follows.
Details of TPL. For TPL, we assign each tool in Open-
CATP with a unique tool token and a dependency token.
The dependency token of a tool means accepting the out-
puts provided by this tool as inputs, as depicted in Figure 3.
We also introduce a special dependency token (task) in-
dicating accepting the task data as inputs. Note that in our
experiments, we focus on resource dependencies, i.e., input-
output dependencies. However, the concepts of TPL can be
easily extended to other types of dependencies, such as or-
der dependencies where there exist strict execution orders
between tools.

Details of CAORL. As for CAORL, we use the execu-
tion prices and task performance defined in §B.3 to calcu-
late the execution costs and plan performance in the reward
function. Besides, to implement the context augmentation
scheme, we need to derive the cost attributes of each tool.
To achieve this, we categorize the input data in OpenCATP
into k = 4 size levels using k-means clustering, with the op-
timal number of clusters determined by the elbow method.
We then profile the execution time and CPU/GPU memory
consumption of each tool across varying input sizes, follow-
ing the method outlined in §3.2.1. Based on these statistics,
we calculate the overall costs for each tool using the execu-
tion prices defined in Eq.(B.1), which ultimately yield the
tool cost attributes.

Details of fine-tuning. We apply the data generation
method described in §3.2 to create 1,200 sequential tool
plans and 780 non-sequential tool plans as training data. We
then fine-tune CATP-LLM using Llama2-7B as the default
backbone with LoRA rank 64. The total number of trainable
parameters, including LoRA weights and learning tokens in
TPL, are less than 1M, accounting for no more than 0.2%
of the total parameters. Besides, it only takes CATP-LLM
9.5h and 6.2h to converge for 2 epochs in the sequential
and non-sequential scenarios, when fine-tuned over a sin-
gle 32GB V100 GPU. Hence, the fine-tuning overhead of
CATP-LLM is small.

C.3. Implementation of Baselines

Zero-shot learning. For zero-shot learning, we design two
types of prompts for sequential planning and non-sequential
planning, respectively. For sequential planning, we prompt
the LLM to produce a tool sequence that can be executed
sequentially to solve the target tasks. As for non-sequential
planning, we instruct the LLM to generate a tool plan fol-
lowing the format similar to our TPL. This is because we
find the LLM achieves poor performance in non-sequential
planning without an appropriate format to generate non-
sequential plans. Note that we also incorporate the average
tool cost information into the prompts to instruct the LLM

to create low-cost tool plans. The average tool cost infor-
mation is derived from offline profiling results described in
§C.2. The prompts for zero-shot learning are shown below.

several high-quality demonstrations as in-context examples
to augment the LLM for plan generation. The prompts for
few-shot learning are shown below.

[Prompt for Sequential Planning]
Instructions

You need to act as a policy model that, given a task
and a set of tools, determines the sequence of tools
that can be executed sequentially to solve the task.
Your goal is to optimize the task performance while

minimizing the execution costs.

Tool Information
The information of each tool is provided as follows:

Object Detection: This tool identifies the names of

objects in an image. It is generally used for object
identification in the iamges. The input and output

types of this tool are image and text, respectively. It
can accept inputs from tools ’’Image Super Resolution
’’, '’'Colorization’’’, ’’Image Deblurring’’, or ’’Image
Denoising’’ .

Costs of Object Detection: On average, this tool takes
about 175.73 milliseconds to run. It consumes
approximately 352.19 MB of CPU memory and 449.37 MB of
GPU memory.

Image Deblurring: This tool can enhance the clarity of
blurry images. It can be used for tasks that require
improving image quality. Both the input and output
types are images. It can accept inputs from tools '’
Image Super Resolution’’, ’’Colorization’’, or ’'’Image
Denoising’’ .

Costs of Image Deblurring: On average, this tool takes
about 667.42 milliseconds to run. It consumes

approximately 444.91 MB of CPU memory and 3498.11 MB of
GPU memory.

[oool
Response Format

Provide a response in the similar format according to
the following example: ’’Tooll, Tool2, Tool3’’.

[Prompt for Sequential Planning]
Instructions
[Same as Zero-Shot]
Tool Information
[Same as Zero-Shot]
In-Context Example

Task: Given a low-resolution, noisy, blurry gray image,
how to return the regular image step by step?

Plan: Image Super Resolution, Image Denoising, Image
Deblurring, Colorization

[oool
Response Format

[Same as Zero-Shot]

[Prompt for Non-Sequential Planning]
Instructions

You need to act as a policy model that, given a task
and a set of tools, determines the execution plan of
tools that can be executed in sequential or parallel to

solve the task. Your goal is to generate the tool
plans that can optimize the task performance while
minimizing the execution costs.

Tool Information
[Same as Sequential Planning]
Response Format

Provide a response in the similar format according to
the following example: [’Tooll’, [’Task’], ’'Tool2’, [’
Tooll’], ’Tool3’, [’Tooll’]]. The meaning of this
format is that the input data of Tool2 comes from the
outputs of Tooll. Besides, [’Task’] means that Tooll
depends on the input data provided by the task. Please
generate plans strictly according to this format.

[Prompt for Non-Sequential Planning]

Instructions

[Same as Zero-Shot]
Tool Information

[Same as Zero-Shot]
In-Context Example

Task: Given a low-resolution grayscale image, how to

(1) return the regular image, and (2) return the class
label of the image in English?

Plan: [’Colorization’, [’Task’], ’'Image Super
Resolution’, [’Colorization’], ’Image Classification’,
["Colorization’]]

[ooo]
Response Format

[Same as Zero-Shot]

Few-shot learning. The few-shot learning share similar
prompts with zero-shot learning, except that we handcraft

HuggingGPT. We reuse the prompt of HuggingGPT [45]
for planning in our experiments. Besides, we have made
some small modifications on the prompt by providing the
tool cost information of each tool.
HYDRA. We reuse the pipeline and the prompt of
HYDRA[24] in our experiments. To ensure fairness, we
restrict the tool set of HYDRA to those available in Open-
CATP. What’s more, similar to HuggingGPT, we have also
added the tool cost information in the prompt of HYDRA.
Instruction fine-tuning (IFT) and RLTFE. We adapt our
TPL and apply it on IFT and RLTF, as we find that they per-
form poorly especially in non-sequential planning if gener-
ating tool plans in natural language.

Note that the engines of GPT-3.5 and GPT-4 used for
all prompt-based methods are gpt-3.5-turbo-0125 and gpt-

Method \ Tool Planner Mean Accuracy (%) Average Number of Tools
CoT GPT-3.5 / 78.31 /
CoT GPT-4 / 83.99 /
Chameleon [34] GPT-4 86.54 3.40
Published Results (Above) A
CATP-LLM | Llama2-7B 85.86 241

Table D.1. Comparing CATP-LLM with other methods on Sci-
enceQA. CoT GPT-3.5/4 answer questions without using tools.

Devices Methods [Task Scores T Exec. Price ($) | Runtime (s) | QoP 1
Sequential Planning
HuggingGPT (GPT-4) 0.665 0.097 1.108 0.246
Hydra (GPT-4) 0.603 0.061 0.654 0.247
NVIDA RTX | CATP-LLM (Llama2-7B) 0.652 0.072 0.748 0.262
3090 ‘Non-Sequential Planning
HuggingGPT (GPT-4) 0.419 0.159 2.099 0.069
Hydra (GPT-4) 0.332 0.068 1.180 0.106
CATP-LLM (Llama2-7B) 0.566 0.138 0.761 0.161
Sequential Planning
HuggingGPT (GPT-4) 0.667 0.087 1.228 0.257
Hydra (GPT-4) 0.603 0.039 0.432 0.267
NVIDA RTX | CATP-LLM (Llama2-7B) 0.651 0.045 0.487 0.286
4090 ‘Non-Sequential Planning
HuggingGPT (GPT-4) 0419 0.103 T413 0118
Hydra (GPT-4) 0.332 0.049 0.844 0.122
CATP-LLM (Llama2-7B) 0.566 0.077 0.463 0.215

Table E.1. Evaluation on real-world commercial GPUs. Arrow 1/
means higher/lower is better.

4-turbo, respectively.

D. Evaluate CATP-LLM on General Bench-
mark

To validate the effectiveness of CATP-LLM on other bench-
mark except OpenCATP, we implement CATP-LLM on
ScienceQA [34], a widely adopted multimodal benchmark
for multi-choice question answering. We reused the tools
in ScienceQA developed by Chameleon [35], a few-shot
learning-based tool planning method. As ScienceQA lacks
implementation for cost measurement (e.g., memory con-
sumption), we use the number of tools in each plan as
the indicator for tool planning costs. As shown in Ta-
ble D.1, CATP-LLM outperforms CoT GPT-3.5 and GPT-
4. Besides, CATP-LLM uses significantly fewer tools than
Chameleon GPT-4 (a reduction of 29.11%) while its accu-
racy is only marginally lower than that of Chameleon GPT-4
(a decline of 0.68%). This highlights CATP-LLM’s advan-
tage in cost-aware tool planning to substantially reduce tool
costs without sacrificing performance. This finding on Sci-
enceQA is consistent with that on OpenCATP, which demon-
strates the generalization ability of CATP-LLM.

E. Evaluate CATP-LLM on Various Hardware
Equipment

According to the cost definition in Equation (B.1), the cost
measurement (e.g., runtime and memory consumption) can
be affected by hardware equipment. To validate the ap-
plicability of CATP-LLM across diverse hardware config-
urations, we test the plans of CATP-LLM and top base-
lines on various real-world commercial GPUs. We report
the performance of these methods in Table E.1. We can

see that CATP-LLM strikes the better balance between task
scores and execution costs, leading to the highest QoP. This
demonstrates the applicability of CATP-LLM in various
hardware configurations.

	Introduction
	Related Work
	Tool Planning with LLMs
	Reinforcement Learning for Tool Planning
	Datasets for Tool Planning
	CATP-LLM Design
	Tool Planning Language
	Cost-Aware Offline Reinforcement Learning
	Context Augmentation
	Learning Through Offline RL

	OpenCATP Dataset
	Experiments
	Setup
	Main Results
	Ablation Study

	Conclusion

	Details of CAORL
	Details of OpenCATP
	Tool Set
	Evaluation Tasks
	Evaluation Metrics
	Details of Experiments
	Training and Testing Sets
	Implementation of CATP-LLM
	Implementation of Baselines
	Evaluate CATP-LLM on General Benchmark

	Evaluate CATP-LLM on Various Hardware Equipment

