
DC-AR: Efficient Masked Autoregressive Image Generation with
Deep Compression Hybrid Tokenizer

Supplementary Material

A. Appendix

We provide additional information and results in the appendix, as outlined below:

• Appendix A.1: Ethics Statement, discussing about how we prevent the misuse of DC-AR.
• Appendix A.2: Implementation Details, including the training hyper-parameters for tokenizer and generator, inference

hyper-parameters for generator.
• Appendix A.3: Additional text-to-image generation of DC-AR and other popular methods.
• Appendix A.4: Qualitative comparison between DC-AR and the discrete-only baseline.
• Appendix A.5: Additional experiments to help clarfiy the advantages of DC-AR.

A.1. Ethics Statement

The misuse of generative AI for creating NSFW (not safe for work) content continues to be a critical concern within the
community. To address this, we have integrated DC-AR with ShieldGemma-2B [72], a robust LLM-based safety check
model. In our implementation, user prompts are first evaluated by the safety check model to detect NSFW content, including
harmful, abusive, hateful, sexually explicit, or otherwise inappropriate material targeting individuals or protected groups. If
a prompt is deemed safe, it is forwarded to DC-AR for image generation. If not, the prompt is rejected and replaced with
a default prompt (“A red heart”). Through rigorous testing, we have demonstrated that our safety check model effectively
filters out NSFW prompts under strict thresholds, ensuring that our pipeline does not produce harmful AI-generated content.

A.2. Implementation Details

Tab. 7 and Tab. 8 present the hyper-parameters used for training the tokenizer and generator, respectively. For image gener-
ation, we employ the following sampling hyper-parameters: a randomized temperature of 4.5, a CFG (Classifier-Free Guid-
ance) scale of 4.5, a constant CFG schedule, 12 sampling steps for discrete tokens, and 20 diffusion steps for residual tokens.

Hyper-parameters Configuration
optimizer Adam
β1 0.9
β2 0.95
discriminator loss weight 0.5
perceptual loss weight 1.0
L1 loss weight 0.0
L2 loss weight 1.0
weight decay 0.0
learning rate 1e-4
lr schedule constant
batch size 128
training epochs (continuous warm-up) 10
training epochs (discrete learning) 40
training epochs (alternate fine-tuning) 10

Table 7. Training hyper-parameters for our tokenizer.

Hyper-parameters Configuration
optimizer Adamw
β1 0.9
β2 0.96
condition dropout 0.1
attention dropout 0.1
cross-entropy loss weight 1.0
diffusion loss weight 1.0
weight decay 0.03
learning rate 1e-4
lr schedule cosine
batch size (256×256) 1024
batch size (512×512) 1024
training steps (256×256) 200K
training steps (512×512) 50K

Table 8. Training hyper-parameters for our generator.

A snow globe containing a
miniature winter village.

A haunted house on a hill
under a full moon.

A submarine exploring an
underwater cave.

A rabbit pulling a carrot
from a garden, storybook
illustration.

A coffee cup with steam
and a heart on it.

A squirrel holding an acorn,
cartoon style.

A vintage camera on a map,
travel photography style.

A wooden rowboat on a
misty lake at sunrise.

A fox wearing a scarf in the
snow.

A moonlit path through a
mystical forest.

A polar bear on an ice floe
under the aurora borealis.

A plate of cookies with a
glass of milk.

A castle on a floating island
in the clouds.

A penguin wearing
sunglasses on a beach.

A train traveling through
snowy mountains.

A fairy tale castle with
rainbow-colored towers.

Figure 7. Additional text-to-image generation results of DC-AR.

A.3. Additional Text-to-image Examples

Fig. 7 and Fig. 8 includes more qualitative examples of text-to-image generation results of DC-AR.

A close-up photo of a honeycomb
with bees actively working,
golden honey visible in cells,
wings a blur of movement.

A 4k dslr image of a lemur
wearing a red magician hat and a
blue coat performing magic tricks
with cards in a garden.

Crystalline city floating among
clouds, connected by rainbow
bridges, with inhabitants riding
winged creatures between
iridescent spires.

Witch's apothecary nestled in a
hollow tree, filled with bubbling
potions, sentient plants, and
familiars organizing ingredients
by moonlight.

Cosmic lighthouse keeper's
cottage surrounded by aurora
waves, collecting stardust in glass
jars, with a telescope tracking
wandering celestial bodies.

Post-apocalyptic greenhouse
preserving Earth's last plant
species, tended by robots, with the
ruined cityscape visible through
cracked glass panels.

Underwater tea party with
mermaids and sea turtles, coral
reef in background.

Robot barista making coffee in a
steampunk café, brass pipes and
gears visible.

Astronaut discovering alien
flowers on distant planet, sci-fi
concept art, dramatic lighting.

Dragon made of constellation stars
flying across night sky, over
mountain landscape.

Tiny house inside a terrarium,
miniature garden with working
lights, tilt-shift photography.

A photo of a bonsai tree in a
handcrafted ceramic pot, perfectly
pruned, sitting by a window with
rain droplets visible.

A close-up photo of frost patterns
forming intricate crystalline
structures on a red maple leaf,
backlit by early morning sun.

A close-up photo of a lotus flower
emerging from muddy water,
perfect pink petals opening toward
sunlight, water droplets visible.

A silverback gorilla sitting
thoughtfully in misty mountain
forest, massive hands gently
examining a small flower, rain-
dampened fur glistening.

A close-up photo of a woman. She
wore a blue coat. She has blue
eyes and blond hair, and wears a
pair of earrings. Behind are
blurred city buildings and streets.

Figure 8. Additional text-to-image generation results of DC-AR.

Discrete-only DC-AR Discrete-only DC-AR

Figure 9. Qualitative Comparison: Images Generated by DC-AR vs. the Discrete-Only Baseline. For each pair of images, the left
image is produced by the discrete-only baseline, while the right image is generated by DC-AR.

A.4. Qualitative Comparison of DC-AR and discrete-only baseline.

We present qualitative comparison examples of images generated by DC-AR and the discrete-only baseline. From these
examples, it is evident that the diffusion head and residual tokens significantly enhance image refinement, particularly in
capturing fine details such as eyes and textures.

A.5. Additional Experimental Results.

In this section, we provide some other experiments related to DC-AR.

Table 2

5K 15K 25K

Fine-tuning 7.48 7.18 7.09 7.04 7.05 7.04 7.03

Training from
scratch

9.6 9.5 9.12 8.4 8.13 8.01 7.89

12.8

6.6

7.4

8.2

9

9.8

5K 15K 25K

Fine-tuning Training from scratch

7.898.018.138.40
9.129.509.60

7.037.047.057.047.097.18
7.48

Training Steps

Tr
ai

ni
ng

 L
os

s

w
/S

tr
uc

tu
re

d
La

te
nt

 S
pa

ce
w

/o
St

ru
ct

ur
ed

 L
at

en
t S

pa
ce

32 channels 64 channels 128 channels16 channels

w
/S

tr
uc

tu
re

d
La

te
nt

 S
pa

ce
w

/o
St

ru
ct

ur
ed

 L
at

en
t S

pa
ce

32 channels 64 channels 128 channels16 channels

1

Figure 10. The resolution generalizability of DC-HT allows us
to train a 512×512 model by fine-tuning from a pre-trained
256×256 model, achieving significantly faster convergence
compared to training from scratch.

Table 2

8 12 16 32 64

Ours 11.18 5.95 4.71 4.31 2.31

2

13

8 12 16 32 64

2.31

4.314.71
5.95

11.18

Sampling Steps

gF
ID

 o
n

Im
ag

eN
et

w
/S

tr
uc

tu
re

d
La

te
nt

 S
pa

ce
w

/o
St

ru
ct

ur
ed

 L
at

en
t S

pa
ce

32 channels 64 channels 128 channels16 channels

w
/S

tr
uc

tu
re

d
La

te
nt

 S
pa

ce
w

/o
St

ru
ct

ur
ed

 L
at

en
t S

pa
ce

32 channels 64 channels 128 channels16 channels

1

Figure 11. gFID Results on ImageNet 256×256 for MAR-B
at Different Sampling Steps. MAR-B requires 64 sampling
steps to achieve its best performance, significantly lagging be-
hind our method, which attains optimal performance in just 12
steps.

Training Loss Curve: Fine-Tuning vs. Training from Scratch. Fig. 10 illustrates the training loss curves for fine-tuning
and training from scratch on 512×512 models over the first 30K steps. It is evident that fine-tuning from a pre-trained
256×256 model enables the 512×512 model to converge significantly faster than training from scratch.

Sampling Step Requirements for MAR. Our primary motivation for adopting a hybrid generation framework, rather than
following MAR’s paradigm of exclusively using continuous tokens, stems from the observation that MAR typically requires a
large number of steps to achieve optimal performance. This is demonstrated in Fig. 6, where we evaluate the official MAR-B
model for class-conditional image generation on ImageNet at 256×256 resolution. Despite the image token sequence length
being 256, MAR-B requires 64 steps to reach its optimal performance, resulting in a substantial inference cost. In contrast,
DC-AR achieves optimal performance in just 12 steps, making it significantly more efficient during sampling.

A.6. Discussion of DC-AR and Related Works.
As a novel autoregressive image generation framework, DC-AR draws inspiration from several related works in the field
while introducing significant innovations that distinguish it from each of them.

Difference with MaskGen [31]. Both MaskGen and DC-AR adopt the masked autoregressive generation paradigm for text-
to-image generation and employ an image tokenizer with a high compression ratio for efficient generation. However, their
technical approaches to building the tokenizer and generator differ substantially. On the tokenizer side, MaskGen follows the
recent trend of using a 1D compact tokenizer to achieve a high compression ratio. However, a major limitation of such 1D
tokenizers is their lack of generalizability across different resolutions. Consequently, MaskGen must train separate tokenizers
and generators from scratch for each resolution, leading to significantly higher training costs, especially for resolutions of
512×512 or higher. In contrast, DC-AR utilizes a single tokenizer trained on 256×256 images for all resolutions and fine-
tunes the generator for higher resolutions from a pre-trained low-resolution model, resulting in much greater efficiency. On
the generator side, MaskGen combines the MaskGIT paradigm for discrete token generation with the MAR paradigm for
continuous token generation. In contrast, DC-AR introduces a novel hybrid generation framework that leverages the superior
representation capability of continuous tokens while maintaining the high inference speed of discrete tokens.

Difference with HART [53]. HART proposes the idea of hybrid tokenization, using a transformer model to generate
discrete tokens and a lightweight diffusion head to generate continuous tokens. While DC-AR inherits these ideas, it adapts
them in a fundamentally different setting. HART follows the VAR paradigm, which generates images through progressive
next-scale refinement. In contrast, DC-AR adopts the MaskGIT paradigm, which generates images through progressive
unmasking. Although the VAR paradigm is widely recognized for its high generation quality and speed, we believe the
MaskGIT paradigm offers unique advantages, including fewer tokens (VAR requires additional tokens due to its multi-scale
tokenization design) and a natural suitability for image editing tasks. Building on this foundation, DC-AR introduces novel
methods, such as a single-scale hybrid tokenizer with a 32× compression ratio (via our three-stage adaptation strategy)
and an efficient hybrid generation framework that extends MaskGIT (via our discrete token-dominated generation pipeline).
Notably, in the results section, we do not include comparisons with VAR-based methods, as we aim to focus the discussion

on how DC-AR advances the MaskGIT paradigm. In future work, we plan to explore adapting our approach to the VAR
paradigm to design even more effective generation frameworks.

