Diorama: Unleashing Zero-shot Single-view 3D Indoor Scene Modeling
Supplemental Materials

In this supplement, we provide additional details of our
method (Appendix A) and experiments (Appendix B). In
Appendix C, we present more qualitative results of Diorama
on SSDB images (Fig. 5), as well as on real-world inter-
net images (Fig. 6) and text-conditioned generated images
(Fig. 7). Particularly, we demonstrate the potential applica-
tion of Diorama in flexible scene editing in Fig. 2.

A. Method details

For all experiments involving LMM-based visual reasoning,
we use the checkpoint “gpt-40-2024-08-06" of GPT-40. It
costs approximately $0.12 on average per SSDB image for
344 examples.

A.1. Holistic scene parsing

Holistic scene parsing consists of several tasks to compre-
hensively understanding the semantics and geometry of a
scene image that serve as inputs to downstream compo-
nents, including object recognition and localization, and
depth and normal estimation.

For open-world object recognition, given an image, we
aim to identify the objects in the scene by prompting GPT-
40 and run open-vocabulary detectors and segmentation
models to obtain the bounding boxes and masks. Below,
we provide prompts and additional details.

Prompt for identifying objects in an image:

To obtain object bounding boxes and masks for local-
ization, we first run the detector OWLv2 [10] by providing
text inputs of a template prompt “a photo of CLASS” and
obtain detection results after non-maximal suppression. To
ensure each object instance is only captured by one detec-
tion box to avoid repeated 3D shape retrieval for the same
instance, we apply class-aware multiple-instance suppres-
sion where the bounding box of the same category with the
largest intersection-over-self (IoS) is discarded. We then
prompt SAM [8] with each detected bounding box to pre-
dict the segmentation mask for each object by assigning the
one with the highest score.

A.2. LMM-powered scene graph generation

After obtaining the set of objects in the scene, we then use
an LMM (e.g. GPT-40) to obtain the scene-graph. The orig-
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Figure 1. Illustration of scene graph generation using GPT-4o.

inal input image is augmented by partitioning into seman-
tically meaningful regions and overlaying a set of visual
marks on it. Specifically, we use predicted object masks
M to represent image regions of interest and each region
is marked by its corresponding (object id) that can be rec-
ognized and referred by GPT-40 using its OCR and visual
reasoning capabilities. The generated scene-graph provide
information about relationships between objects, including
support relations.

We specify to the LMM the desired output response in
JSON format so it can be successfully executed by the pro-
gram afterward. We also limit object supporting relations
to be selected from [“placed on”, “mounted on”]. To en-
courage the LMM to obey the provided numeric object
marks and reduce hallucination errors, we use interleaved
text prompt by incorporating the object marks and template
response format into the scene graph generation prompt di-
rectly for symbolic reference.

Prompt for extracting a scene graph for objects in a im-
age. Note the objects were already identified and provided
as input.

A.3. Architecture reconstruction

To obtain a planar reconstruction of the architecture, we ap-
ply a three-step process: 1) segmenting out objects and in-
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Figure 2. We show the potential of Diorama in flexible scene editing in terms of different editing types, including object rearrangement,

insertion, removal and replacement.

painting to obtain empty rooms, 2) using depth estimation
to obtain 3D points, and 3) clustering points by normals and
plane fitting to obtain planar architecture surfaces.
Segmentation and inpainting to obtain empty room.
We begin by obtaining object masks that are used to in-
paint the images, leaving us with unfurnished scenes. For
SSDB, we use dichotomous segmentation methods such as
BiRefNet [22] and MVANet [20]. To maximize the recall
of predicted masks, we apply each method separately twice
by filling the mask predicted in the first iteration with white
color then re-running the models on such images and merg-
ing the masks from both iterations.

We find that BiRefNet excels at producing sharp and
complete masks for large objects and dense object arrange-
ments, while MVANet has higher recall for scenes with-
out a single cluster of objects. Therefore, we opt to merge
the masks produced by these two methods. Additionally,
we use SEEM [24] for all other experiments as we find
that scenes featuring objects heavily dispersed around the
scene are challenging for dichotomous segmentation net-
works. We note that the benefit of using dichotomous seg-
mentation compared to other segmentation networks is in
completeness of the masks (e.g., they cover the full area of
the object with higher probability). Ensuring that the masks
are as complete as possible is crucial for the further steps of
PlainRecon.

After obtaining a segmentation of the objects, we ‘erase’
the objects by applying inpainting to defurnish the room.
We use LaMa [17] to inpaint the background (similar to Yu
et al. [21]). While recent advances in generative models
are producing higher-quality inpainting, we find that even
specialized inpainting for removal methods such as CLIP-
Away [1] still suffer from hallucinating rather than inpaint-
ing empty background. This step should ideally produce
perfectly defurnished and sharp image. In practice, the re-
sulting image is not fully defurnished and the inpainted re-
gion is blurry. While the former remains a bottleneck of the
pipeline, we notice that the latter is frequently alleviated by
robustness of monocular depth estimation models which is
the next step of the pipeline.

Depth estimation to obtain point cloud. After we have
a defurnished room, we apply depth estimation to obtain a
3D point cloud of the scene. We compare two depth estima-

tion models applied on the inpainted images - DepthAny-
thingV2 (DAv2) [19] and Metric3D (M3D) [7]. As we
require normals for clustering points into planes, we lever-
age M3D normal estimation capabilities. We note that the
predicted normals are more robust to the blurriness of the
inpainting step compared to depth. We project the pixels to
point clouds using the predicted metric depth. At the end of
this process, we have point clouds with normals of unfur-
nished scenes, where the variation in normals should now
be exclusively explained by presence of different planes in
scene architecture.

Plane identification and fitting. The next step is normals-
based clustering of the points into planar segments. We be-
gin by pre-processing point clouds by applying voxel down-
sampling and removing statistical outliers with both using
implementations from Open3D [23]. Since voxel down-
sampling bins the points in each voxel into one, the result-
ing point cloud has an approximately even distance between
pairs of neighboring points. This ensures stability of hyper-
parameters in the subsequent steps and filters some noise
introduced by depth estimation models. Next we run K-
means clustering (k,,, = 12 to account for noise) on normals
to determine seed normals. We iteratively select the seed
with the largest number of corresponding points, and clus-
ter all the points that have normals within the angle thresh-
old (a = 10 in our experiments). We further apply DBScan
[2] to separate the initial cluster as it is possible to have
multiple walls with identical normals in the scene. The al-
gorithm terminates when we either run out of seed normals
or have less than the threshold number of unclustered points
left (Nmin = 200). Finally, we propagate the instance la-
bels to full point clouds using KNN (k, = 1). We assign
the floor label to the largest cluster with a normal pointing
sufficiently upwards. Similarly, we filter out ceiling clusters
as those points with a downward facing normal.

Once we have obtained the point clusters, we fit bounded
planar segments to the points to obtain the final architecture.
We start by fitting a plane using RANSAC [3] to obtain a
plane equation, and then estimate the bounding boxes of
architecture elements. To obtain tight boxes, we compute
convex hulls of point cloud segments, project the convex
hull vertices onto 2D plane and apply the rotating calipers
algorithm [14] to obtain the bounding box with the small-



Scene-aware Alignment T

Method Collision |  Relation 1
rAcc tAcc sAcc Acc
BM baseline 034 0.84 044 0.15 12.29 0.58
ZSP [5] 0.32 0.88 0.50 0.18 8.87 0.59
ZSP w/ DinoV2 0.33 0.81 048 0.20 9.80 0.57
ZSP w/ ft DinoV2 0.34 0.83 0.50 0.21 9.97 0.59
GigaPose [11] 036 0.89 0.67 0.24 7.43 0.61
Ours 041 091 0.61 0.28 6.93 0.61

Table 1. Additional comparison of zero-shot pose estimation
methods for the 9-DoF CAD alignment task on SSDB images us-
ing estimated depth by Metric3DV2.

Groups #Cats / #Insts rAccT tAccT sAcctT Acct
Household 466 /5577 0.46 0.87 0.71 0.32
Furniture 24 /1137 0.54 0.86 0.71 0.39
Occluded 369/3175 0.44 0.84 0.62 0.28
Complete 401 /3539 0.50 0.89 0.78 0.38
Supported 468 /5715 0.48 0.87 0.71 0.34
Supporting 7911634 0.46 0.84 0.69 0.31

Table 2. Averaged alignment results across different SSDB ob-
ject groups. For each group, we count the number of fine-grained
categories and object instances. Occluded objects are those with
occlusion ratio above a threshold 5% of pixels.

. Ground Truth Depth Estimated Depth
# retrievals
rAcc tAcc sAcc Acc rAcc tAcc sAcc  Acc
1 022 092 052 0.11 021 0.88 047 0.10
4 032 096 068 020 032 093 0.63 0.18
8 037 097 072 023 037 094 0.68 0.21

Table 3. 9D CAD alignment results given a different number of
retrieved 3D shapes using either ground-truth or estimated depth.

est area. Finally, we convert vertices back into 3D. While
such initialization provides good plane bounds, we need to
refine the plane further to account for imperfections of pre-
vious steps. We begin by making sure that all the walls are
orthogonal to the floor, this is simply done by solving a sys-
tem of linear equations that finds a vector orthogonal to the
intersection line of floor and wall and lies on the floor plane.
We proceed to use this vector as a new normal for our wall
equation. Then we proceed to refine the plane bounds by
finding the intersections of each architecture element, pro-
jecting two closest vertices of one plane onto the intersec-
tion line and adjusting the vertices of the plane we projected
onto to the projected vertices of the other plane, effectively
connecting them. Finally, we duplicate the vertices with a
small offset along the direction opposite to normal and ex-
port the meshes of architectural components.

Scene Structure

Ablation Collision |

orientation placement overall
all-in-one 12.80 0.19 0.92 0.16
stage-wise 3.78 0.98 0.95 0.93

Table 4. Comparison between all-in-one and stage-wise optimiza-
tion.

RGB DiffCAD ROCA Ours
Figure 3. Qualitative comparison between different ground-truth
evaluation sets used in DiffCAD, ROCA and ours.

A.4. Multimodal 3D shape retrieval

For each observed object in the image, we use a two-
step process for retrieving matching shapes from our shape
database. We first use a text query to retrieve objects match-
ing the semantic category, and then an image query to re-
rank the retrieved candidates. We find this two-stage ap-
proach helps ensure that retrieved objects are of the correct
semantic class, as it is possible for semantically different
objects to be geometrically similar (e.g. books vs cardboard
box).

We construct the text query from the template “a photo
of CLASS” (similar to in detection phase). For the image
query, we use object crop extracted from the original im-
age and mask out background and occluders using bound-
ing box b; and mask m;. We also carefully separate re-
trieval of supporting and non-supporting objects according
to the supporting hierarchy in the scene graph since sup-
porting objects need to be pre-processed to represent only
one object entity (not containing smaller sub-objects).

A.S5. Zero-shot object pose estimation.

We pre-compute 7' multiview renderings and depth maps
for each retrieved CAD model s;. Each query object crop
I°i and set of multiview images { %7 } is encoded into nor-
malized patch features F(I) using DinoV2. For each patch
embedding from the query image, we construct a seman-
tic correspondence to a patch embedding from each render-
ing view with the minimal cyclical distance [5, 11]. We
compute correspondence score as cosine similarity between
patch embeddings. Specifically, given a pair of query image
1, and reference rendering image I,., we construct a “cycli-
cal distance” map and define a similarity score using their
corresponding DINOv2 patch features, f, and f,., and fea-
ture masks m, and m,.. For each query feature f; at the
patch location 4, we compute its cyclical patch ¢ in I, as



Method supervision #hypo bed  bkshlf cabinet chair sofa table bin  bathtub display others cls. avg ist. avg

ROCA 4 - 7.02 3.62 756  20.03 526 9.16 13.19 8.11 13.21 8.72 12.87
DiffCAD 4 1 7.02 0.00 3.36 938 658 1.58 2.79 4.59
DiffCAD 4 1228  0.72 6.72 142 7.89 1.58 4.34 6.84
DiffCAD 4 10 7.02 1.45 421 1141 526 1.26 3.06 5.41
Ours X - 0.00 0.74 4.24 972 395 427 0.00 0.00 10.36 5.56 3.33 6.66

Table 5. Object-focus alignment accuracy on the Scan2CAD benchmark. ROCA is fully-supervised using in-domain data. DiffCAD is
weakly-supervised using synthetic data.

ACDC Input

Figure 4. More comparison examples on SSDB.
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Figure 5. More Diorama examples on SSDB images.

follows:

i’ = argmax S(f2’, f1)
w,my >0

j = argmax S(fy, f})
k,mk>0

where S(-, -) denote as cosine similarity and a cyclical dis-
tance map is constructed as D with D; = —||i,¢'||2. In the
end, we build the feature correspondences by taking at most
K query-reference patch pairs (z,7) € N with top-K mini-



Figure 6. More examples for real-world internet images.

mal cyclical distances in D. To ensure only keeping corre-
spondences with strong similarity, we empirically set sim-
ilarity score threshold as 0.7. The overall similarity score
between I, and I, is defined as the average of similarities
of feature correspondences:

| 1 -
Slm(‘[qa-[r):m Z S( qafﬂ)
(i,))eN

The query image is matched to the most similar multiview
rendering with the maximal averaged correspondence-wise
feature similarity to produce a coarse pose hypothesis.

A.6. Scene optimization

During scene optimization, we take the retrieved objects,
initial object pose estimates, and optimize the placements
so that the relationships in the scene graph are respected. In
addition to support relations described in the scene graph,
we further establish an adherence relationship between each
object on the floor and potential walls using a heuristic al-
gorithm that judging whether the closest distance from the
object’s surface center to a candidate wall is within a prede-
fined threshold. We hence also optimize object position and
rotation based on both the support and adherence relation-
ship. In the main paper, we described the different stages of
optimization. Here we provide more details on how support
is enforced while ensuring there is sufficient space, and no
inter-penetrations.

Support. A key relationship is that of support, for which
we want to ensure that each object is properly placed in
contact with their supporting object. To do so, for each ob-
ject in our database, we precompute candidate support sur-
faces by identifying roughly planar surfaces on the object.
Based on estimated initial object poses and the scene graph
G describing object relationships, for each a pair of inter-
acting objects, we compute a pair of contact surface from
the supported object and support surface from the support-
ing object. The support surface is determined by selecting
the surface with the minimal distance to the center of the
supported object. The contact surface is selected to be the
one having the closest direction with the support direction.

Space. Particularly for the Space stage, we define a sup-
porting volume for each object by extruding its identified
support surface to an extent hitting another surface in the
vertical direction. An object is properly supported only if
it does not exceed the bounds of its corresponding support-
ing volume. We formulate the term ey, as the sum of dis-
tance from the corners of the contact surface to the sides
of the supporting volume and the vertical distance between
the centers of the object bounding box and the supporting
volume.

Optimization. In each optimization stage, we use a sepa-
rate SGD optimizer with initial learning rate 0.01 and mo-
mentum 0.9 for corresponding pose parameters, except for
the Space stage where we set initial learning 0.001 for the



Text prompt

Living room with dark
leather sofa centered on
back wall, coffee table
with 3 art books stacked,
2 empty wine glasses, TV
remote. Round jute rug
underneath, 4 scatter
cushions on sofa, brass
floor lamp beside sofa
with twisted cord

Tranquil master bedroom
featuring a low-profile
king bed, minimalist
nightstands, and a large
abstract canvas in muted
tones. Textured neutral
wallpaper, plush cream
carpet, ambient lighting.
Hotel photography style,
perfect composition

Study room scene: large
desk with computer setup
flanked by matching
bookcases, reading nook
with upholstered chair and
ottoman, side table with
task lamp, storage cabinet
with sliding doors, cork
board above desk, cable-
knit throw draped over
chair

Living room with dark
leather sofa centered on
back wall, coffee table
with 3 art books stacked,
2 empty wine glasses, TV
remote. Round jute rug
underneath, 4 scatter
cushions on sofa, brass
floor lamp beside sofa
with twisted cord

Multi-purpose room: daybed
against wall, folding
craft table on wheels,
tall storage lockers,
meditation corner with
floor pillows, wall-
mounted desk that folds
down, rolling cart with
art supplies, compact
exercise equipment

Text prompt

Charming bathroom with
vintage-style fixtures,
apothecary-style toiletry
collection, Turkish towels
on hooks, woven storage
baskets, and trailing
eucalyptus branches. Subway
tile walls, penny tile
flooring, aged brass
hardware. Natural lifestyle
photography

Generated image

Photo of a bathroom

Photo of an apartment

Photo of an office desk
from the distance

Photo of the office desk
from the distance

Figure 7. More examples of applying Diorama in a text-to-scene setting.

scale parameter. We also decay the learning rate by 0.1 ev-
ery 50 steps. We run 200 steps in total in each optimization
stage. We describe the objective function of each optimiza-
tion stage as below, including weight hyperparameters:

Stage 1: €1 = 3 - €qlign + €sem 1
Stage 2: €3 = 5+ €place + €rel 2
Stage 3: 3 = eyol (3)
Stage 4: e4 = 5 - €place T €col “4)

B. Additional experiments

Implementation details. We render SSDB scene images
of size 1008 x784. Considering computation efficiency and
good coarse pose selection, we render 180 gray-color mul-
tiviews of size 224x224 for each 3D shape from prede-
fined camera viewpoints to focus on geometry-wise seman-
tic similarity and leave out effect of texture. For zero-
shot pose estimation, we use the fine-tuned ViT-L of Di-
noV2 [12] following [11] to embed 14 x 14 image patches.
We run experiments on one Nvidia RTX 4090 GPU.

B.1. Details of comparing against ACDC

We run ACDC on all SSDB images with the default configu-
ration. For both ACDC and Diorama, we feed ground-truth
2D object bounding boxes and segmentation masks into
systems to avoid 2D perception errors for analysis. Both
systems retrieve object from out-of-distribution 3D shape
collections. Since ACDC is developed upon the OmniGib-
son simulation platform, it retrieves from the built-in set of
approximately 8,800 OmniGibson CAD objects for conve-
nient deployment in the physics engine. For Diorama, since
we do not specify certain CAD file formats to be compati-
ble with a physics engine, we are able to include more 3D
shapes for retrieval from different sources. In particular, we
compose a set of 25K 3D shapes for Diorama to retrieve
from. For ACDC, overall runtime is dominated by network
API calls to the LLM (GPT40). ACDC calls GPT4o three
times per detected object, while Diorama calls GPT4o twice
in total, irrespective of the number of objects. For the user
study, we randomly sample 48 images and corresponding
results to ask the participants to assess the quality of single-
view 3D scene modeling in terms of object matching and
overall scene quality. For object matching, we consider both



semantic correctness and geometric similarity. For overall
scene quality, we consider the accuracy of architecture re-
construction and object arrangement, and physical plausi-
bility of the whole scene. The question order is randomly
shuffled to the participant.

B.2. Architecture reconstruction evaluation

We compare our proposed PlainRecon against a recent
method for obtaining 3D room layout via render-and-
compare (RaC) [16]. RaC is a common architecture re-
construction baseline, and though follow-ups exist they in-
troduce marginal improvements while having less reliable
or no available public implementation [13, 18]. For a fair
comparison, we provide RaC with inputs from more modern
backbones compared to the ones used in the original imple-
mentation. We use DepthAnythingV2 or Metric3D depth
and PlaneRecTR [15] planar segments.

As ACDC outputs plane parameters and masks but does
not output actual mesh planes, we perform a simple extrac-
tion procedure. First, we back-project the depth used by
ACDC to the point cloud. Then, similarly to our method,
we run RANSAC for each architectural element based on
image segmentation masks to fit the plane, resulting in se-
lecting inlier points that correspond to the largest planar re-
gion of the point cloud. We obtain the oriented bounding
box from the inliers and extract mesh from it. Finally, we
align the normals of the architectural elements with the nor-
mals ACDC used to optimize object placement.

B.3. Object alignment on estimated depth

Tab. | presents the comparison of different zero-shot pose
estimation methods on the 9D CAD alignment task given
predicted depth by Metric3D. The results align with our ob-
servation under the ground-truth depth setting.

B.4. Performance for different object groups

We also analyze post-optimized object pose according to
different object groups each object belongs to in Tab. 2.
Since we aim for an open-world system that generalizes
to long-tail categories in real life, we divide objects into
three subgroups: household objects/common furniture, oc-
cluded/complete objects, and supported/supporting objects,
rather than a coarse set of preselected categories as in prior
work [4, 6]. We find that the performance is reduced for
dominant household items, occluded objects, and support-
ing objects.

B.5. Multiple retrievals

In Tab. 3, we investigate the benefits of having more re-
trieved 3D shapes for correspondence computation and
coarse pose proposal. It turns out that alignment accuracy
increases with potentially more different pose initialization.

B.6. Different optimization strategy

We investigate the benefits of using a stage-wise optimiza-
tion procedure rather than a more common all-in-one strat-
egy where all terms are accumulated for optimizing simulta-
neously in Tab. 4. It shows that we obtain significant gains
by decomposing the entire optimization task into separate
stages.

B.7. Quantitative results on ScanNet

Tab. 5 shows quantitative comparison between ROCA, Dif-
fCAD and ours on the proposed evaluation set. Following
prior work [4, 6, 9], we report the object alignment accu-
racy where a CAD model is considered correctly aligned
if the translation error < 20cm, the geodesic rotation error
< 20°, and the scale ratio < 20%. We note that ROCA is
trained end-to-end using imperfect Scan2CAD annotations
and DiffCAD is trained on the synthetic data per category.
Both ROCA and DiffCAD cannot generalize to unseen ob-
jects during training (indicated as gray-colored numbers).
Our zero-shot method achieves competitive performance
against DiffCAD that further exhibits performance degra-
dation under the probabilistic setting due to the partial ob-
servations of commonly occluded objects. Fig. 3 visu-
ally shows differences between ground-truth evaluation sets
used in DiffCAD, ROCA and ours.

C. Qualitative examples

We provide additional examples of generated scenes in Fig-
ures 4 to 7. In Figure 5, we provide plausible arrangements
based on renders from SSDB, as well as the associated pre-
dicted scene-graphs. With Diorama, we can produce al-
ternative arrangements that use different objects, while re-
specting the spatial relationships of the original image (e.g.
picture on the wall, monitor on the desk).

We further showcase arrangements from real-world im-
ages (Figure 6) and images generated via text-to-scene (Fig-
ure 7).
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