
Appendix

A. Overview
Thank you for reading the Appendix of our research. This
appendix is organized as follows:
• Section B provides a detailed explanation of the experi-

mental setup.
• Section C describes the evaluation metrics used in our

study.
• Section D discusses the application of different loss func-

tions, types of Gaussians, and voxelizers.
• Section E elaborates on the Fast Volume Reconstruction

method and analyzes its computational complexity.
• Section F details the implementation of adaptive density

control in this work.
• Section G presents additional visualizations of DGR re-

construction.

B. Experiment Details
B.1. Code and Reproducibility
Our code is publicly available at https://github.
com/wskingdom/DGR and is meticulously organized for
readability. Experiments are categorized into three groups,
each with corresponding code: (1) Cone-Beam Sparse-
View CT, (2) Fan-Beam Sparse-View CT, and (3) Fan-Beam
Limited-Angle CT. To reproduce our results, please refer to
the Readme.md file in our codebase.

B.2. Organization of Experiments
To accommodate diverse experimental settings in related re-
search (e.g., varying projection numbers and scanning ge-
ometry), our experiments are divided into three groups:
Cone-Beam Sparse-View CT: Experiments with 75, 50,
and 25 views were conducted on the FIPS dataset [9], align-
ing with the settings of R2-Gaussian [12].
Fan-Beam Sparse-View CT: Experiments with 180, 120,
90, and 60 views were performed on the AAPM-Mayo
LDCT dataset [8] and the FUMPE dataset [7], following
the methodology of the advanced Deep Learning Recon-
struction (DLR) method, SWORD [11].
Fan-Beam Limited-Angle CT: Experiments on 90◦

Limited-Angle CT were conducted on the AAPM-Mayo
LDCT dataset [8], consistent with DiffusionMBIR [3].

C. Evaluation Metrics
C.1. Peak Signal-to-Noise Ratio (PSNR)
PSNR [4] is a widely used metric to evaluate the quality of
the reconstructed images. It is defined as:

PSNR(x, y) = 10 · log10
(

MAX2

MSE(x, y)

)
, (15)

Table 6. Usage of Different Loss Functions

Cone-Beam Sparse-View CT (50 view, 300 iter)

L1 Loss SSIM Loss TV Loss PSNR SSIM
✓ 38.66 0.929
✓ ✓ 38.94 0.933
✓ ✓ ✓ 39.65 0.939

Table 7. Usage of Different Loss Functions

Fan-Beam Sparse-View CT (60 view, 300 iter)

L1 Loss SSIM Loss TV Loss PSNR SSIM
✓ 38.82 0.931
✓ ✓ 38.88 0.933
✓ ✓ ✓ 39.15 0.936

Table 8. Usage of Different Loss Functions

Fan-Beam Limited-Angle CT (90◦, 300 iter)

L1 Loss SSIM Loss TV Loss PSNR SSIM
✓ 37.69 0.932
✓ ✓ 37.81 0.934
✓ ✓ ✓ 38.02 0.936

where MAX is the maximum possible pixel value of the
image and MSE(x, y) is the mean squared error between
the original and reconstructed images.

C.2. Structural Similarity Index (SSIM)
SSIM [10] is a metric that measures the similarity between
two images. It is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (16)

where µx and µy are the mean values of the images x and
y, σ2

x and σ2
y are the variances of the images, σxy is the

covariance of the images, and C1 and C2 are constants to
stabilize the division when the denominator is small.

C.3. Evaluation Details
For the Cone-Beam 75/50/25-view Sparse-View CT exper-
iments, we assess performance on the FIPS dataset [9] and
maintain its original data split for consistency.

In the Fan-Beam 180/120/90/60-view Sparse-View CT
experiments, we evaluate the performance of the recon-
struction methods over the entire 3D volume, as established
in SWORD [11]. In this context, x and y in the PSNR and
SSIM metrics refer to the reconstructed 3D volume and the
ground truth 3D volume, respectively.

For the 90◦ Limited-Angle CT experiments, we evaluate
performance across axial, coronal, and sagittal slices fol-
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Figure 4. This figure illustrates the reconstruction process by iterations of Fan-Beam 60-view CT. The positions of Gaussians are initialized
using Filtered Back Projection, as described in the experimental settings.

lowing DiffusionMBIR [3]. Here, x and y in the PSNR
and SSIM metrics denote the reconstructed 2D slice and the
ground truth 2D slice, respectively. The mean PSNR and
SSIM values are then computed across all slices.

D. Discussions
D.1. Ablation on Loss Functions
In the main text, we use different loss functions together to
enhance reconstruction quality. Specifically, the SSIM loss
is computed in the projection domain to preserve structural
information, while the TV loss is computed in the volume
domain to promote sparsity in the reconstructed volume.

Ltotal = λ1L1(P̂ , P ) + λ2LSSIM(P̂ , P ),

where λ1 = 0.8 and λ2 = 0.2 are the weights of the L1

Loss and SSIM loss, respectively.
A combined use of L1 Loss, SSIM loss, and TV loss is

as follows:

Ltotal = λ1L1(P̂ , P )+λ2LSSIM(P̂ , P )+λ3LTV(V ),

where λ1 = 0.6, λ2 = 0.2, and λ3 = 1 are the weights of
the L1 Loss, SSIM loss, and TV loss, respectively.

The results for these loss combinations are presented in
Table 6, Table 7, and Table 8, corresponding to Cone-Beam
Sparse-View CT, Fan-Beam Sparse-View CT, and Fan-
Beam Limited-Angle CT experiments on the real-world

FIPS dataset [9]. The results demonstrate that the combined
use of L1 Loss, SSIM loss, and TV loss achieves the best
performance in terms of PSNR and SSIM metrics.

D.2. Isotropic Gaussians vs Anisotropic Gaussians
The use of isotropic Gaussians is justified by the generally
isotropic nature of tissue attenuation properties in CT, es-
pecially for soft tissues, which exhibit minimal directional
dependence. As noted in Principles of Computerized Tomo-
graphic Imaging [5], small elements of a distributed source
can be treated as isotropic, reflecting tissue behavior.

To further validate this point, we conduct ablation studies
on 50-view Sparse-View CT of Table 1 (Synthetic dataset),
repeating experiments 10 times and reporting Mean± SD in
Table 10 to evaluate the result of substituting our isotropic
Gaussians with anisotropic Gaussians. Results also validate
that using isotropic Gaussians can not only achieve better
image quality and stability but also reduce training time.

D.3. Comparison with Other Voxelizer
We also conduct ablation studies on 50-view Sparse-View
CT of Table 1 (Synthetic dataset) and repeat experiments
10 times and reporting Mean ± SD in Table 11 to evalu-
ate the result of substituting our Fast Volume Reconstruc-
tion with the R2-Gaussian voxelizer. Results show that our
reconstruction module is faster than R2-Gaussian voxelizer.
Besides, our reconstruction module boosts the Gaussian op-
timization jointly, which achieves better performance.



Table 9. Comparisons of 180/120/90/60-view Sparse-View CT on FUMPE dataset. Best in Bold.

Method Extra Data 180-view 120-view 90-view 60-view
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

FBP [1] 0 33.74 0.859 30.65 0.803 28.52 0.757 25.59 0.592
MCG [2] 8341 36.93 0.898 37.05 0.899 37.03 0.899 35.46 0.900
DiffusionMBIR [3] 8341 36.78 0.914 36.50 0.907 36.79 0.918 34.86 0.918
SWORD [11] 8341 41.50 0.967 39.69 0.959 37.77 0.948 31.64 0.910
DGR 0 41.78 0.978 40.13 0.969 38.13 0.961 36.48 0.923

Table 10. Replace isotropic Gaussians by Anisotropic Gaussians

PSNR↑ SSIM↑ Time↓

DGR 38.74± 0.07 0.960± 0.01 7m13s
w/ anisotropic Gaussian 38.71± 0.17 0.960± 0.02 8m05s

Table 11. Replace our voxelizer by R2-Gaussian Voxelizer

PSNR↑ SSIM↑ Time↓

DGR 38.74± 0.07 0.960± 0.01 7m13s
w/ R2-Gaussian Voxelizer 38.02± 0.22 0.956± 0.02 8m37s

E. Fast Volume Reconstruction
E.1. Highly Parallelized Implementation
We show the detailed implementation of our Fast Volume
Reconstruction In Algorithm 1 and our code. The algorithm
takes the mean µ, covariance C, and intensity I of the Gaus-
sians as input and reconstructs the 3D volume in a fast and
efficient manner. Notably, this process is implemented in
a highly parallelized manner to accelerate the computation
without sacrificing the reconstruction quality. More details
can be found in our implementation code.

E.2. Analysis of Complexity

Method VRAM (GiB) Time (s)

Direct Reconstruction (estimated) 16662.50 /
FVR w/o Decomposition 16.87 1.05
FVR w/ Decomposition 16.87 0.09

As mentioned in the ablation study, the proposed fast
volume reconstruction saves both time and space consump-
tion. This difference in complexity primarily stems from
the computation of the Mahalanobis distance, D2.
Direct Reconstruction In the direct reconstruction ap-
proach, the Mahalanobis distance is calculated as D2 =
(P − µ)⊤Σ−1(P − µ). Here, P ∈ Rw×h×c×d represents
the position of a voxel in the volume, where (d = 3) indi-
cates the spatial dimension. µ ∈ Rn×d is the set of means
for n Gaussians, and Σ ∈ Rn×d×d is the covariance matrix
for these Gaussians. The computational complexity for di-
rect reconstruction is O(n · w · h · c · d2). Evidently, this

method is not feasible for a large number of Gaussians due
to its prohibitive memory consumption.
Fast w/o Decomposition In this condition, the
Mahalanobis distance is calculated as D2 =∑

d B
′′
n,w0,h0,c0,d

C−1
n,d,d B′′

n,w0,h0,c0,d
. Here, w0, h0, and

c0 denote the dimensions of the local region. The computa-
tional complexity for this approach is O(n ·w0 ·h0 · c0 ·d2).
Compared to direct reconstruction, the local region size
(w0 · h0 · c0) is significantly smaller than the full volume
size (w · h · c), leading to a substantial reduction in memory
consumption.
Fast Volume Reconstruction with Decomposition The
decomposed form of Fast Volume Reconstruction yields the
Mahalanobis distance as:

D
2
=

∑
d

(
B

′
w0,h0,c0,d − ∆µn,1,1,d

)
C

−1
n,d,d

(
B

′
w0,h0,c0,d − ∆µn,1,1,d

)

The space complexity remains equivalent to that of fast vol-
ume reconstruction without decomposition. However, the
time complexity is significantly reduced to O(w0 ·h0 ·c0 ·d),
a benefit derived from the decomposition of the large matrix
multiplication.

F. Adaptive Densification

Inspired by the adaptive density control utilized in 3D
Gaussian Splatting [6], we implement this mechanism for
our DGR, aiming to densify the Gaussians within the
discretized 3D volume, employing techniques including
cloning, splitting, and pruning. The densification strategy
is periodically applied throughout the optimization process,
striking a balance between the number of Gaussians and the
reconstruction quality.

We clone the Gaussian in under-reconstructed regions
into two Gaussians. Specifically, the original and cloned
Gaussians share identical positions µ and covariances Σ,
but their intensities are halved to preserve the total intensity.
This process helps to capture the fine details in the under-
reconstructed regions. While the gradients of the original
Gaussians remain unchanged, the gradients of the cloned
Gaussians are set to zero.

Conversely, in over-reconstructed regions, we split the
Gaussian into two smaller Gaussians, keeping their scale
σ in proportion to the original one. The positions µ of



Iter=1 Iter=20 Iter=30 Iter=40 Iter=50 Iter=60 Iter=70Iter=10

Iter=80 Iter=100 Iter=120 Iter=140 Iter=160 Iter=180 Iter=200Iter=90

Iter=250 Iter=350 Iter=400 Iter=450 Iter=500 Iter=550 Iter=600Iter=300

Iter=650 Iter=750 Iter=800 Iter=850 Iter=900 Iter=950 Iter=1000Iter=700

Figure 5. This figure illustrates the reconstruction process by iterations of Fan-Beam 90◦ Limited-Angle CT. The positions of Gaussians
are randomly initialized for visualization comparison.
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Figure 6. This figure illustrates the reconstruction process by iterations of Fan-Beam 60-view Sparse-View CT by 3D volume visualization.

these new Gaussians are derived from the probability den-
sity function (PDF) of the original Gaussian.

Furthermore, we implement a pruning mechanism to
eliminate Gaussians that either possess near-zero gradient
magnitudes or exhibit a scale σ exceeding three times the
local box dimension. For these Gaussians, we simply re-
move them from the reconstruction volume to reduce the
computational cost and prevent overfitting. More details of
the algorithm are provided in Algorithm 2 and in our code.

G. Visualization

Figures 4, 5, and 6 visually depict the reconstruction pro-
cess across various iterations, with the corresponding iter-
ation number indicated for each image. For comparative
purposes, Gaussians for Sparse-View CT are initialized as
detailed in the main text, whereas those for Limited-Angle
CT are initialized randomly. As the iterations progress, the
reconstructed volumes consistently show steady improve-
ment, demonstrating the effectiveness of DGR.



Algorithm 1 Fast Volume Reconstruction

Require: µ ∈ Rn×d: mean of Gaussians (d = 3 for 3D space)
Require: C ∈ Rn×d×d: covariance of Gaussians
Require: I ∈ Rn×1: intensity of Gaussians
V ← Ow,h,c ▷ Initialize target volume with zeros
B′

w0,h0,c0,d
← meshgrid({−w0−1

2 , . . . , w0−1
2 }, {−

h0−1
2 , . . . , h0−1

2 }, {−
c0−1
2 , . . . , c0−1

2 }) ▷ Initialize the shift of local
regions
∆µ← µ− ⌊µ⌋ ▷ Align µ to discrete voxel grid
B′TC−1B′

n,w0,h0,c0
←

∑
d B

′
w0,h0,c0,d

C−1
n,d,d B′

w0,h0,c0,d
▷ Decompose large matrix multiplication

B′TC−1∆µn,w0,h0,c0 ←
∑

d B
′
w0,h0,c0,d

C−1
n,d,d ∆µn,1,1,d

∆µTC−1B′
n,w0,h0,c0

←
∑

d ∆µn,1,1,d C−1
n,d,d B′

w0,h0,c0,d

∆µTC−1∆µn,1,1,1 ←
∑

d ∆µn,1,1,d C−1
n,d,d ∆µn,1,1,d

Γ← e−
1
2 (B

′TC−1B′+B′TC−1∆µ+∆µTC−1B′+∆µTC−1∆µ) · I ▷ Compute the Gaussian contributions
Pn,w0,h0,c0,d ← ⌊µ⌋n,1,1,1,d +B′ ▷ Compute the voxel positions that the Gaussians will impact
V alidn,w0,h0,c0 ← (Pn,w0,h0,c0,0 ≥ 0)∧(Pn,w0,h0,c0,0 < w)∧(Pn,w0,h0,c0,1 ≥ 0)∧(Pn,w0,h0,c0,1 < h)∧(Pn,w0,h0,c0,2 ≥
0) ∧ (Pn,w0,h0,c0,2 < c) ▷ Get valid indices that are within the volume
V ← scatter add(V, P [V alid],Γ[V alid]) ▷ Accumulate the contributions at the valid indices in parallel
return V ▷ Reconstructed CT volume

Algorithm 2 Adaptive Densification

Require: µ ∈ Rn×d: mean of Gaussians
Require: σ ∈ Rn×1: standard deviation of Gaussians
Require: I ∈ Rn×1: intensity of Gaussians
Require: nmax: Maximum allowed quantity of Gaussians (500K by default)
Require: τ : Minimum gradient value (2e-4 by default)
Require: θ: Threshold determining Gaussian classification as small or large (0.005 of body diagonal length by default)
Require: size: Box size of each Gaussian (17 by default)

for iteration← 100 to max iter step 100 do
avg grad← µ.grad/iteration
maskclone ← (avg grad ≥ τ) ∧ (σ ≤ θ)
available gaussians← nmax − n ▷ Ensure the total number of Gaussians does not exceed the limit
nclone ← min(available gaussians,

∑
maskclone

)
sorted indices← argsort(avg grad[maskclone])
maskclone ← maskclone ∧ top k(sorted indices, nclone) ▷ Select top nclone Gaussians to clone
I[maskclone]← I[maskclone]/2 ▷ Halve the intensity of the cloned Gaussians to maintain the total intensity
µclone ← no grad(µ[maskclone]), σclone ← no grad(σ[maskclone]), Iclone ← no grad(I[maskclone])
µ← µ ∪ µclone, σ ← σ ∪ σclone, I ← I ∪ Iclone, n← n+ nclone

masksplit ← (avg grad ≥ τ) ∧ (σ > θ)
available gaussians← nmax − n
nsplit ← min(available gaussians,

∑
masksplit

)

sorted indices← argsort(avg grad[masksplit])
masksplit ← masksplit ∧ top k(sorted indices, nsplit) ▷ Select top nsplit Gaussians to split
µnew ← PDF (µ[masksplit], σ[masksplit], 2) ▷ Initialize new Gaussians by PDF sampling
σnew ← σ[masksplit]/

3
√
2, Inew ← I[masksplit] ▷ Divide the standard deviation by 3

√
2 to maintain the total volume

µ← µ ∪ µnew − µsplit, σ ← σ ∪ σnew − σsplit, I ← I ∪ Inew − Isplit, n← n+ nsplit

maskprune ← (avg grad) ≤ τ ∨ (σ > 3× size)
µ← µ[¬maskprune], σ ← σ[¬maskprune], I ← I[¬maskprune]

end for
return µ, σ, I
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