Supplemental Material

1. DIFFERENCES FROM PREVIOUS DIFFEOMORPHIC TRANSFORMATION-BASED
CORTICAL SURFACE RECONSTRUCTION METHODS

Diffeomorphic transformation-based cortical surface reconstruction [1-5] typically models smooth
deformation from an initial triangular mesh to another using an ODE. This process generally
describes the reconstruction of either the inner white matter surface, the outer pial surface, or
both concurrently. Theoretically, they are defined as follows:
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Taking the template to white matter surface as an example, Sy represents the initial smooth
surface, I denotes the input brain MRI and ¢ denotes the reconstructed surface. Typically, given
the initial condition Sy, the final surface ¢ is obtained using numerical solutions of differential
equations, such as Euler or Runge-Kutta method. During this solution process from [0, T], a
series of byproducts are generated within (0, T). These intermediate state surfaces lack practical
significance, implying that the deformation process lacks interpretability.

For the proposed ACDE, rather than modeling an uninterpretable deformation process, it is
designed to model the developmental trajectory at the population level. When a specific brain
MRI is provided as condition, the ACDE adapts to model the individual-level developmental
trajectory. Fig. S1. illustrates the differences between the proposed method and other diffeomor-
phic transformation-based cortical surface reconstructions. Our method offers an interpretable
process, imbuing the reconstruction with developmental significance. Furthermore, it enables
simultaneous reconstruction of the cortical surface corresponding to the brain MRI and establish-
ment of its prior developmental trajectory in a single solution process, whereas previous methods
only yield the reconstructed surface without interpretability in the iterative process.

2. DIFFERENCES FROM PREVIOUS DEVELOPMENTAL PREDICTION METHODS

Previous methods capable of developmental prediction were predominantly based on morpho-
logical features extracted from cortical surfaces via neuroimaging pipelines like Freesurfer [6-8].
To mitigate the influence of the cortex’s complex morphology, these features are typically mapped
onto a standard spherical space for subsequent analyses. Spherical UNet and its variants [9-11]
are commonly employed for longitudinal prediction. However, most of these architectures are
trained at predefined fixed time points, and a single model can only map one time point to another.
This design requires substantial paired data at each time point, often challenging to obtain in
clinical settings. To address this issue, DITSAA [11] was introduced to achieve cortical prediction
at multiple time points based on irregularly collected dataset. The DITSAA first disentangles
age from input cortical features, then integrates the desired age segment information, ultimately
enabling developmental prediction at any time point. This method models brain development on
sparse longitudinal data across multiple time points, such as datasets where each subject’s scans
cover only two time points but collectively span the desired 0-24 month range of infant brain
development. Although DITSAA establishes a more flexible model, it still requires paired data for
training. Clinically, the volume of data at single time points far exceeds that of research-specific
longitudinal data. Thus, how to effectively use both single and multiple time point data to
construct developmental trajectories remains an area requiring further attention.

The proposed method is based on diffeomorphic transformation-based cortical surface recon-
struction, directly constructing developmental trajectories at the surface level. This approach
captures more information, particularly reflecting the substantial age-related changes in the corti-
cal folding pattern during early neonatal or fetal development. Single cortical features struggle to
represent such drastic changes, constraining longitudinal analysis. Moreover, proposed method
effectively utilize unpaired data for precise longitude generation. Finally, our method generates
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Fig. S1. Differences from Previous Diffeomorphic Transformation-Based Cortical Surface Re-
construction Methods. (a) Standard Solution. (b) Proposed method.

cortical surfaces for multiple time points in a single iteration, in contrast to Spherical UNet and its
variants, which generate only one cortical feature per inference. These characteristics demonstrate
the superiority and flexibility of our approach.

3. VISUALIZATION RESULTS

In this section, additional visualization results of the generated brain development trajectory are
presented (below the references).
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Fig. S2. Visualization of white matter surfaces. GT: Ground Truth surfaces. Pred: Predicted
Surfaces.
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Fig. S3. Visualization of pial surfaces. GT: Ground Truth surfaces. Pred: Predicted Surfaces.
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