M?W Efficient Spiking Point Mamba for Point Cloud Analysis

Supplementary Material

In the supplementary material, we further explore the
behavior of Farthest Point Sampling (FPS) and experimen-
tally validate the theoretical foundation of HDE. We present
more ablation studies on neurons and mask ratios, as well as
comparing our SPM with additional models [41]. Next, we
provide more implementation details of our SPM. Finally,
we include additional visualizations across various tasks.

A. Farthest Point Sampling Behavior

Farthest Point Sampling (FPS) is a widely used technique
for point cloud analysis, which select a subset of points
from a larger point cloud in a way that maximizes the mini-
mum distance between selected points. FPS can be divided
into three key stages: early, middle, and late stages.

Early Stage. The early stage of FPS involves random initial
selection, which can cause instability in the sampling pro-
cess. The points selected in this stage are heavily influenced
by the random choice, leading to a not so well distribution
across the point cloud. This randomness results in high vari-
ance, making the early stage less reliable for capturing the
overall structure of the point cloud. Together, the early stage
is unstable due to random initial selection.

Middle Stage. As the algorithm progresses, the middle
stage becomes more stable. FPS starts to cover important
features of the geometry, improving the distribution of sam-
pled points. The algorithm focuses on regions with signif-
icant features while maintaining a good spread across the
point cloud. This stability enables a more meaningful rep-
resentation of the point cloud. Together, the middle stage
stabilizes and captures the skeletal structure.

Late Stage. In the late stage, FPS starts to experience di-
minishing returns. As the number of selected points in-
creases, the algorithm starts to introduce redundancy or
noise. The points selected in this stage are often located
in areas that are already well-represented by previous selec-
tions, leading to overlapping regions.Together, the late stage
may introduce redundancy or noise.

We use Chamfer Distance to measure the similarity be-
tween the early, middle, and late stages under different ran-
dom seeds in Tab. 9, and visualize the sampling structures
of the early, middle, and late stages under certain random
seeds for quantitative comparison in Fig. 6, thereby demon-
strating the rationale behind the hierarchical stages.

From Fig. 6, we can see that in the early stage under
different random seeds, FPS is unstable and does not fully
represent the object information, indicating a strong influ-
ence from the random initial points. In the middle stage,
the points show little visual change and provide a stable
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Figure 6. Quantitative comparison of the sampling structures of
the early, middle, and late stages under different random seeds.

representation of the entire point cloud. However, in the
late stage, the point cloud no longer captures the overall
structure, exhibiting a highly variable shape, and can only
be considered as redundant points.



) Pre-training Classification Segmentation

Configuration
ShapeNet ModelNet40 ScanObjectNN ShapeNetPart

Optimizer AdamW AdamW AdamW AdamW
Learning rate le-3 le-3 le-3 2e-4
Weight decay Se-2 Se-2 Se-2 Se-2
Learning rate scheduler cosine cosine cosine cosine
Training epochs 300 300 300 300
Warmup epochs 20 30 30 20
Batch size 128 72 36 36
Num. of encoder layers N 12 12 12 12
Num. of decoder layers Ng 4 - - -
Input points M 1024 1024 2048 2048
Num. of patches n 128 128 256 256
Patch size k 32 32 32 32
Augmentation Scale&Trans Scale&Trans Rotation -

Table 8. Implementation details for pre-training and downstream tasks such as classfication and segmentation tasks.

From Tab. 9, we can observe that the Chamfer Distance
between the early, middle, and late stage point clouds under
different random seeds can also be understood as their sim-
ilarity. Multiple experiments indicate that the early and late
stage points exhibit more unstable distributions compared to
the middle stage points, which can be intuitively seen from
the visualization in Fig. 6. Furthermore, the middle stage
points show a high similarity across different random seeds,
confirming that they reliably represent the skeletal structure
of the entire point cloud. Additionally, we observe that the
similarity between the late and middle stage points is also
high, suggesting an overlap between these two stages and
further supporting the redundancy characteristic of the late
stage points.

B. Ablation Study

The ablation study mainly supplements performance com-
parison experiments for SPM with different neurons, as well
as comparisons with other models [41] using ILIF [29] and
its training strategies. Additionally, we conduct an ablation
study on the pre-training mask ratio.

Ablation on different neurons. In Tab. 10, we conduct a
detailed ablation study using different neurons on the OBJ-
BG, OBJ-ONLY, PB-T50-RS and ModelNet40 datasets. It
can be observed that the accuracy of traditional IF neurons
and their variants tends to fluctuate only slightly, whereas
ILIF significantly improves the model’s performance. This
improvement is due to its integer-based training and spike-
based inference mechanism. Therefore, a direct compari-
son with the traditional LIF model is not entirely reason-
able. Here, we present the experimental results of SPM us-
ing ILIF, where accuracy reaches 91.5%, 91.2%, and 85.2%
on OBJ-BG, OBJ-ONLY and PB-T50-RS datasets respec-

Chamfer Distance

Seed DEarly,Early D]\lid,]\lid D]\Iid,Late DLate,Late

lvs.2 0.18 0.09 0.11 0.24
4vs. 7 0.17 0.07 0.09 0.20
6 vs. 25 0.16 0.06 0.08 0.22
16 vs. 32 0.19 0.06 0.10 0.25
44 vs. 42 0.18 0.06 0.10 0.22
123 vs. 321 0.19 0.06 0.07 0.23

Mean 0.18 0.07 0.09 0.23

Table 9. The similarity of the early, middle, and late stages under
different random seeds. (a vs. b, D*'P) denotes the Chamfer
distance between stage A under random seed @ and stage B under
random seed b.

ScanObjectNN
Method Neurons ModelNet40
OBJ-BG OBIJ-ONLY PB-T50-RS
E-3DSNN ILIF [29] 86.5* 86.0* 80.4* 91.7
IF [3] 89.8 89.0 84.1 92.0
LIF [9] 90.2 89.5 84.2 92.3
SPM EIF [1] 89.9 89.2 84.1 92.1
PLIF [7] 90.5 89.6 84.1 92.5
ILIF [29] 91.5 91.2 85.2 93.0
Improvement +5.0 +5.2 +4.8 +1.3

Table 10. Ablation study on different neurons with 4 time steps
for IF, LIF, EIF and PLIF and 1 x 4 for ILIF.

tively, and 93.0% on the ModelNet40 dataset.

Comparison with other models. In Tab. 10, we also make
an additional comparison between SPM and other ILIF-
based models such as E-3DSNN. To ensure a fair compar-
ison, we used a configuration of 7" x D as 1 x 4, which
follows the ILIF training strategy, allowing the model to
convert into 4 time steps for spike-based inference during
the inference phase. In the case of using ILIF equally, we



Masking ratio Loss PB-T50-RS ModelNet40
0.4 1.66 86.1 92.6
0.6 1.57 86.5 93.1
0.8 2.03 85.9 82.7
0.9 2.00 86.0 92.5

Table 11. Ablation study on masking strategy. The pre-training
loss (x 1000) along with fine-tuning accuracy (%) are reported on
PB-T50-RS and ModelNet40.

observe that our SPM significantly outperforms benchmark
models such as E-3DSNN, with overall accuracy reaching
91.5%, 91.2%, 85.2%, and 93.0% on OBJ-BG, OBJ-ONLY,
PB-T50-RS, and ModelNet40, respectively.

Ablation on mask ratios In Tab. 11, we conduct a detailed
ablation study on the masking ratio. It can be observed
that when the masking ratio is set to 0.6, which is the ratio
we ultimately selected, the accuracy of the fine-tuning task
reaches their optimal performance, outperforming other set-
tings. This suggests that for spike-based pre-training, too
much masking can lead to excessive information loss, pre-
venting the SNN encoder from learning meaningful feature
representations. On the other hand, too little masking may
reduce the difficulty of the reconstruction task, also causing
SNN encoder to fail to learn strong feature representations.

C. Implement details

In this section, we provide more specific details about the
training parameters for each dataset, as shown in Tab. 8.
Different training hyperparameters were used for different
datasets, but the backbone remained the same, consisting of
a 12-layer stacked SPM, which facilitated the generalization
across different datasets and the fine-tuning of pre-training
models.

D. More Visualizations

The figure of main paper shows only a few sample visu-
alizations. In this section, we provide more visualizations
to quantitatively demonstrate the effectiveness and perfor-
mance of our SPM, as shown in Fig. 7 and Fig. 8.

As can be seen from Fig. 7, the part segmentation results
of SPM are almost identical to those of PointMamba across
different classes. Slightly more complex classes may show
a minor difference, but it does not significantly affect the
overall performance. From Fig. &, it can also be observed
that our SPM performs excellently in the pre-trained recon-
struction task. Despite the large masking range, it is still
able to recover the general shape of the object.
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Figure 7. Qualitative results of part segmentation of our SPM and
ANN counterpart (PointMamba) on ShapeNetPart.
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Figure 8. Qualitative results of reconstruction on ShapeNet.
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