
Ensemble Foreground Management for Unsupervised Object Discovery

Supplementary Material

6. Mathematical and Statistical Explanation
for UnionCut

In this section, we mathematically discuss the effective-
ness of UnionCut and explain why it works. Suppose
P = {p1, p2, ..., p784} is the set of patches of an image, and
F and B are subsets of P representing the set of foreground
patches and background patches given by the ground truth,
respectively i.e. F

⋃
B = P and F

⋂
B = ϕ. As for a Unit

Voter (UV), its seed patch is denoted as si ∈ P , and the set
of patches returned by the UV indicating the region similar
to the seed patch si is defined as F̂ . With the definitions
above, after the execution of a UV with si as the seed patch,
for any background patch ∀pj ∈ B, the probability of it
being returned by the UV, i.e. pj ∈ F̂ , can be calculated
by Eq. (8).

P (pj ∈ F̂ |pj ∈ B)

=P (pj ∈ F̂ , si ∈ F |pj ∈ B) + P (pj ∈ F̂ , si ∈ B|pj ∈ B)

=P (si ∈ F) · P (pj ∈ F̂ |si ∈ F, pj ∈ B) + P (si ∈ B) · P (pj ∈ F̂ |si ∈ B, pj ∈ B)

(8)
Similarly, for a foreground patch ∀pj ∈ F , its probabil-

ity of being returned by the UV is given by Eq. (9).

P (pj ∈ F̂ |pj ∈ F)

=P (pj ∈ F̂ , si ∈ F |pj ∈ F) + P (pj ∈ F̂ , si ∈ B|pj ∈ F)

=P (si ∈ F) · P (pj ∈ F̂ |si ∈ F, pj ∈ F) + P (si ∈ B) · P (pj ∈ F̂ |si ∈ B, pj ∈ F)

(9)
UnionCut is required to aggregate outputs of 784 UVs to

generate a heat map indicating the background area in the
image, with each patch on the image being selected as the
seed by one of the 784 UVs. Since there is no ground truth
and prior semantic knowledge of each patch available for
UnionCut and each UV is conducted on its own graph with
different seed patches and anti-seed patches, each execution
of a UV is independent. Therefore, the mathematical ex-
pectation of the value corresponding to a foreground patch
Pj ∈ F or background patch Pj ∈ B on the aggregated
heat map A given by Eq. (4) in the paper can be calculated
by Eq. (10) or Eq. (11).

E(pj ∈ F̂ |pj ∈ F) = 784 · P (pj ∈ F̂ |pj ∈ F) (10)

E(pj ∈ F̂ |pj ∈ B) = 784 · P (pj ∈ F̂ |pj ∈ B) (11)

As introduced in Sec. 3.2, UnionCut is expected to
work on an image if background regions show higher re-
sponses than the foreground on the heat map A gener-
ated by aggregating all UVs outputs. To achieve this goal,

with Eq. (8), Eq. (9), Eq. (10), and Eq. (11), Inequality 12
should hold, where P (si ∈ B) is of interest since it rep-
resents the prior probability that the selected seed si ∈ P
belongs to the background, which can be approximated by
the proportion of background patches in the entire image.

Recall the statement we made in Sec. 3.2 that there are
two types of UVs in UnionCut: 1) background UV: when
the UV's seed patch is a background patch, the UV is ex-
pected to return a binary mask indicating the background
in the image; and 2) foreground UV: when a foreground
patch is used as the seed patch of a UV, the UV outputs
a binary mask indicating foreground regions in the im-
age. To solve Inequality 12 with P (si ∈ B) as the vari-
able, four items in it need to be known in advance, i.e.
P (pj ∈ F̂ |si ∈ F, pj ∈ B), P (pj ∈ F̂ |si ∈ B, pj ∈ B),
P (pj ∈ F̂ |si ∈ F, pj ∈ F), and P (pj ∈ F̂ |si ∈ B, pj ∈
F), with the meaning of each item as follows:
1) P(pj ∈ F̂|si ∈ F,pj ∈ B): the probability of a back-
ground patch pj ∈ B being returned by a foreground UV
with a foreground patch si ∈ F as the seed patch;
2) P(pj ∈ F̂|si ∈ B,pj ∈ B): the probability of a back-
ground patch pj ∈ B being returned by a background UV
with a background patch si ∈ B as the seed patch;
3) P(pj ∈ F̂|si ∈ F,pj ∈ F): the probability of a fore-
ground patch pj ∈ F being returned by a foreground UV
with foreground patch si ∈ F as the seed patch;
4) P(pj ∈ F̂|si ∈ B,pj ∈ F): the probability of a fore-
ground patch pj ∈ F being returned by a background UV
with a background patch si ∈ B as the seed patch.

These four items cannot be calculated directly. There-
fore, we estimate their values statistically by MCE (Monte
Carlo Estimation) with images in different datasets [37, 51,
64]. For example, to estimate P (pj ∈ F̂ |si ∈ F, pj ∈ B),
the percentage of an image's background patches being re-
turned by each foreground UV is saved, and the mean value
of these saved percentages across all images is calculated
as the estimated P̂ (pj ∈ F̂ |si ∈ F, pj ∈ B). Since
P = {p1, p2, ..., p784} is defined as the set of patches of an
image, a dataset D with K images can be denoted by D =
{P1, P2, ..., PK}. For the kth image in the dataset, its fore-
ground patch set and background patch set given by ground
truth are represented by Fk and Bk, respectively. Besides,
F̂kl denotes the set of patches returned by a UV on the kth

image with sl ∈ Pk as the seed patch. Eq. (13) provides
the MCE solution to estimate P (pj ∈ F̂ |si ∈ F, pj ∈ B),
P (pj ∈ F̂ |si ∈ B, pj ∈ B), P (pj ∈ F̂ |si ∈ F, pj ∈ F),
and P (pj ∈ F̂ |si ∈ B, pj ∈ F), where | · | calculates the
number of elements in a set.

E(pj ∈ F̂ |pj ∈ B) > E(pj ∈ F̂ |pj ∈ F)

⇔784 · P (pj ∈ F̂ |pj ∈ B) > 784 · P (pj ∈ F̂ |pj ∈ F)

⇔P (pj ∈ F̂ |pj ∈ B) > P (pj ∈ F̂ |pj ∈ F)

⇔P (si ∈ F) · P (pj ∈ F̂ |si ∈ F, pj ∈ B) + P (si ∈ B) · P (pj ∈ F̂ |si ∈ B, pj ∈ B) > P (si ∈ F) · P (pj ∈ F̂ |si ∈ F, pj ∈ F) + P (si ∈ B) · P (pj ∈ F̂ |si ∈ B, pj ∈ F)

⇔P (si ∈ F) · [P (pj ∈ F̂ |si ∈ F, pj ∈ B)− P (pj ∈ F̂ |si ∈ F, pj ∈ F)] > P (si ∈ B) · [P (pj ∈ F̂ |si ∈ B, pj ∈ F)− P (pj ∈ F̂ |si ∈ B, pj ∈ B)]

⇔[1− P (si ∈ B)] · [P (pj ∈ F̂ |si ∈ F, pj ∈ B)− P (pj ∈ F̂ |si ∈ F, pj ∈ F)] > P (si ∈ B) · [P (pj ∈ F̂ |si ∈ B, pj ∈ F)− P (pj ∈ F̂ |si ∈ B, pj ∈ B)]

⇔P (pj ∈ F̂ |si ∈ F, pj ∈ B)− P (pj ∈ F̂ |si ∈ F, pj ∈ F) > P (si ∈ B) · [P (pj ∈ F̂ |si ∈ B, pj ∈ F)− P (pj ∈ F̂ |si ∈ B, pj ∈ B) + P (pj ∈ F̂ |si ∈ F, pj ∈ B)− P (pj ∈ F̂ |si ∈ F, pj ∈ F)]

(12)

Dataset P̂ (pj ∈ F̂ |si ∈ F, pj ∈ B) P̂ (pj ∈ F̂ |si ∈ B, pj ∈ B) P̂ (pj ∈ F̂ |si ∈ F, pj ∈ F) P̂ (pj ∈ F̂ |si ∈ B, pj ∈ F)
COCO2014 train [37] 0.1215 0.5496 0.1981 0.0563
COCO20K [37, 53] 0.1203 0.5499 0.1987 0.0572
ECSSD [51] 0.0308 0.7270 0.1927 0.0198
DUTS-TR [64] 0.0495 0.7628 0.2098 0.0264
DUTS-TE [64] 0.0549 0.6621 0.2099 0.0294

Table 7. MCE results of different datasets for UV.

P̂ (pj ∈ F̂ |si ∈ F, pj ∈ B) =

∑K
k=1

∑
sl∈Fk

|F̂kl∩Bk|
|Bk|∑K

k=1 | Fk |

P̂ (pj ∈ F̂ |si ∈ B, pj ∈ B) =

∑K
k=1

∑
sl∈Bk

|F̂kl∩Bk|
|Bk|∑K

k=1 | Bk |

P̂ (pj ∈ F̂ |si ∈ F, pj ∈ F) =

∑K
k=1

∑
sl∈Fk

|F̂kl∩Fk|
|Fk|∑K

k=1 | Fk |

P̂ (pj ∈ F̂ |si ∈ B, pj ∈ F) =

∑K
k=1

∑
sl∈Bk

|F̂kl∩Fk|
|Fk|∑K

k=1 | Bk |
(13)

Tab. 7 illustrates the estimation of the four items in In-
equality 12 with Eq. (13) on different datasets. It can be ob-
served that the probability (i.e. P̂ (pj ∈ F̂ |si ∈ F, pj ∈ B))
of a background patch being returned by a foreground UV is
very low, and vice versa (i.e. P̂ (pj ∈ F̂ |si ∈ B, pj ∈ F)).
However, there is a significant difference in the probability
(i.e. P̂ (pj ∈ F̂ |si ∈ F, pj ∈ F)) of foreground patches be-
ing returned by a foreground UV, compared to the probabil-
ity (i.e. P̂ (pj ∈ F̂ |si ∈ B, pj ∈ B)) of background patches
being returned by a background UV. Specifically, when a
background patch is selected, other background patches are
more likely to be segmented, whereas when a foreground
patch is selected, other foreground patches are not as eas-
ily segmented. In other words, during the voting process,
background UVs are relatively active—they, while refus-
ing to vote for foreground patches, nominate most of the
background patches. In contrast, foreground UVs are rela-
tively inactive: they refuse to vote for background patches,
and also only nominate a small portion of the foreground
patches. This leads to UnionCut’s aggregated final vot-
ing results showing that background patches receive signifi-

cantly more votes than foreground patches, even in extreme
cases—for instance, when the number of background UVs
is smaller than that of foreground UVs (i.e., when the fore-
ground occupies the majority of the image), this situation
still holds. This difference between the two types of UVs
is counterintuitive. but precisely, this critical distinction al-
lows UnionCut to work robustly, even in images where the
background occupies a tiny portion.

Based on the above findings, we can explain why Union-
Cut works robustly for the detection of foreground unions
with ensemble learning theories.

UnionCut's Effectiveness and Robustness Assuming
that we regard all UVs as weak classifiers for background
classification (regardless of whether they are foreground
UVs or background UVs), meaning that the regions with
a value of 1 in all UVs'output binary masks are considered
background, then a background UV can always correctly
classify the background. For a foreground UV, it can be
interpreted here as a background weak classifier handling
hard cases: although it may erroneously return foreground
as background, its less active nature and its tendency to sup-
press both foreground and background in its output mean
that the errors it produces have minimal impact on the final
voting result. Therefore, in the final aggregated result of
UnionCut, the correct background segmentation produced
by the background UVs dominates, causing UnionCut as a
strong classifier to reliably output the background regions
of the image, which, after being inverted and thresholded,
become the final foreground union output by UnionCut.

Impact of the Proportion of the Background in the
image on UnionCut With MCE results in Tab. 7, Inequal-
ity 12 can be solved by substituting the estimated values
in Tab. 7 into Inequality 12. As shown in Tab. 9, taking
COCO2014 train [37] as an example, Inequality 12 holds
when P (si ∈ B) > 0.1344. Since P (si ∈ B) in an im-

Dataset P̂ (pj ∈ F̂ |si ∈ F, pj ∈ B) P̂ (pj ∈ F̂ |si ∈ B, pj ∈ B) P̂ (pj ∈ F̂ |si ∈ F, pj ∈ F) P̂ (pj ∈ F̂ |si ∈ B, pj ∈ F)
COCO2014 train [37] 0.536 0.8832 0.6554 0.3962
COCO20K [37, 53] 0.536 0.8832 0.6554 0.3977
ECSSD [51] 0.3348 0.9467 0.7131 0.2668
DUTS-TR [64] 0.3567 0.9568 0.6966 0.2853
DUTS-TE [64] 0.3518 0.9183 0.7195 0.2476

Table 8. MCE results of different datasets for cosine similarity matching.

age is approximated by the percentage of area occupied by
background patches, P (si ∈ B) > 0.1344 can be under-
stood as indicating that when the background occupies more
than 13.44% of the image area, UnionCut can robustly de-
tect the foreground union in the image. In other words, even
if there are large objects in an image, UnionCut works ro-
bustly if the foreground union occupies less than 86.56% of
the image.

Dataset Solution
COCO2014 train [37] P (si ∈ B) > 0.1344
COCO20K [37, 53] P (si ∈ B) > 0.1372
ECSSD [51] P (si ∈ B) > 0.1862
DUTS-TR [64] P (si ∈ B) > 0.1787
DUTS-TE [64] P (si ∈ B) > 0.1967

Table 9. Solutions of Inequality 12 for UV based on the MCE
results in Tab. 7

7. Examples of Foreground Union Detection on
Images with Large Foreground

In this section, we show UnionCut and UnionSeg's suc-
cessful examples on images whose background is smaller
than the foreground to support our claim in Sec. 3.2 that
UnionCut can stay effective on images of large foreground
areas. As shown in Fig. 6, the foreground union of three im-
ages occupied mainly by the foreground are accurately de-
tected by both UnionCut and UnionSeg, demonstrating that
UnionCut and UnionSeg stay effective on images of small
backgrounds.

Dataset Solution
COCO2014 train [37] P (si ∈ B) > 0.1968
COCO20K [37, 53] P (si ∈ B) > 0.1973
ECSSD [51] P (si ∈ B) > 0.3574
DUTS-TR [64] P (si ∈ B) > 0.3361
DUTS-TE [64] P (si ∈ B) > 0.3541

Table 10. Solutions of Inequality 12 for consine similarity
matching based on the MCE results in Tab. 8

Figure 6. Examples of UnionCut and UnionSeg's foreground
union detection results on images with large foreground.

8. Comparison between UV and Straitforward
Feature Matching

In this section, we continue to use the mathematical and sta-
tistical methods in Appendix 6 to demonstrate the unique
advantages and necessity of UV, compared with other
straightforward feature matching methods. Here, we make
matching similar patches with cosine similarity used by
[53, 54, 59] as an example. Specifically, given the seed
patch si ∈ P and its feature vector ki ∈ K, the patches
sharing features similar to si can be obtained and defined
as F̂ = {pj |pj ∈ P, kTj ki > 0}. Based on Eq. (13),
P (pj ∈ F̂ |si ∈ F, pj ∈ B), P (pj ∈ F̂ |si ∈ B, pj ∈ B),
P (pj ∈ F̂ |si ∈ F, pj ∈ F), and P (pj ∈ F̂ |si ∈ B, pj ∈
F) of cosine similarity matching can be estimated, as shown
in Tab. 8. Compared with UV, when a foreground patch
is selected as the seed patch, the probability (i.e. P (pj ∈
F̂ |si ∈ F, pj ∈ B)) of a background patch being returned
is much larger, and vice versa, indicating that consine sim-
ilarity feature matching is more likely to make mistakes as
a weak classifier than UV. Besides, the difference between
P (pj ∈ F̂ |si ∈ B, pj ∈ B) and P (pj ∈ F̂ |si ∈ F, pj ∈ F)

is not significant, indicating that cosine similarity matching
of a foreground seed patch and background seed patch are
similarly active. This reduces the dominant influence of the
cosine similarity of the background seed patches on the final
aggregated voting results.

Furthermore, we can also solve Inequality 12 with the
estimated results in Tab. 8. As shown in Tab. 10, tak-
ing DUTS-TE as an example, the aggregated strong clas-
sifier with cosine similarity matching as weak classifiers
only works on images with the background area occupies
over 35.41% (compared with 19.67% for UV), i.e. the fore-
ground should occupy less than 64.59% areas of the image
(compared with 80.33% for UV), which much limits the ro-
bustness and effectiveness of the strong classifier since there
are many image cases that break this constraint, examples
can be seen in Fig. 6.

Weak Classifier's Diversity We can also compare UV
and cosine similarity matching in terms of the require-
ment of ensemble methods with ensemble learning theo-
ries. Specifically, to obtain a robust enough strong classi-
fier, there is a diversity requirement for weak classifiers, i.e.
weak classifiers should be different from each other and as
diverse as possible [18]. A large number of homogeneous
weak classifiers can cause the performance of the aggre-
gated strong classifier to degrade to that of a weak classifier.

Compared to UV, using straightforward cosine similar-
ity matching of a seed patch as a weak classifier leads to
a large number of homogeneous weak classifiers. That is
because directly computing the cosine similarity between a
seed patch's feature and those of other patches requires cal-
culating the distance matrix of all patches, and this distance
matrix is symmetric. This symmetry means that if a patch
pj ∈ P appears in the cosine similarity matching results
when using another patch pi ∈ P as the seed patch, then
pi will also appear in the cosine similarity matching results
when using pj as the seed patch. Ultimately, this results in
a certain homogeneity in the output of the weak classifiers.

In contrast, UV is more diverse as a weak classifier be-
cause the output of each UV of a seed patch si ∈ P depends
not only on the features of si but also on the features of its
anti-seed patches Bf = {pb|pb ∈ P, b ̸= f, kTb kf < 0}.
Since the anti-seed patches for each seed patch si are differ-
ent, the introduction of anti-seed patches eliminates the pre-
viously mentioned symmetry, making UV as a weak classi-
fier more varied, leading to UnionCut as a strong classifier
being more robust.

In summary, based on the previous discussion with
Tab. 7, Tab. 8, Tab. 9 and Tab. 10, our proposed UV has ad-
vantages in robustness over straightforward feature match-
ing, and is less limited by the impact of large area occu-
pied by the foreground. Moreover, although our UV is more
complex than straightforward feature matching, its pipeline,
which models the image as a graph, can effectively con-

sider both the seed patch and the anti-seed patches during
execution, which can hardly be done by straightforward fea-
ture matching. This makes our UV technically irreplaceable
(this does not mean that no other algorithm can achieve the
same effect as the UV, but more research is needed to ex-
plore this possibility).

9. Reliability of Corner Prior
To explore the reliability of the corner prior used by Union-
Cut, we focus on its success rate on images from differ-
ent datasets [37, 51, 64, 74]. Specifically, we calculate the
success rate by assessing the proportion of images in each
dataset where the union of the ground truth occupies less
than four corners of the image. As shown in Tab. 11, the
corner prior's success rate achieves over 99% on every se-
lected dataset, indicating its robustness in checking the reli-
ability of the foreground union mask detected by UnionCut.

Dataset Success Rate
COCO2014 train [37] 99.92%
COCO2017 train [37] 99.92%
COCO20K [37, 53] 99.92%
ECSSD [51] 100%
DUTS-TR [64] 99.83%
DUTS-TE [64] 99.89%
DUTS-OMRON [74] 100%

Table 11. Successful rate of the corner prior utilized by Union-
Cut with different datasets.

10. FOUND vs. UnionSeg
Fig. 7 compares the pipeline of FOUND [54] and Union-
Seg. In [54], an unnamed UOD method, here referred
to as “FOUND-”, is proposed to conduct UOD on the
dataset DUTS-TR [64]. After that, the object discovered by
FOUND- is used as pseudo-labels to train a ViT surrogate
model (i.e. FOUND). Similarities and differences between
FOUND and UnionSeg are listed below:
Similarities: they share the same model structure.
Differences:
1) their loss functions and training settings are different;
2) Their pseudo-labels have different sources and represent
different meanings: the pseudo-labels for FOUND are gen-
erated by FOUND- and represent the objects discovered
in the image (which do not necessarily cover the majority
of objects in the image). In contrast, UnionSeg's pseudo-
labels are generated by UnionCut and are designed to cover
most of the object regions in the image, i.e., the foreground
union;
3) Based on the difference mentioned above, the function
of UnionSeg and FOUND are also different: FOUND and

Figure 7. The comparison of the framework between FOUND [54] and UnionSeg.

(a) Pipeline of CutLER (b) Pipeline of CutLER+UnionCut/UnionSeg

Figure 8. The comparison between the pipeline of CutLER and CutLER+UnionCut/UnionSeg.

FOUND- are proposed for unsupervised object discovery
(i.e. UOD), while UnionSeg and UnionCut are utilized to
predict the union of foreground area (i.e. foreground union)
in an image, which are used as foreground priors for UOD
methods.

11. Combining UnionCut/UnionSeg with Ex-
isting UOD methods and Implementation
Details

The core idea of combining UnionCut or UnionSeg with ex-
isting UOD methods is to replace their default foreground
priors with UnionCut/UnionSeg. In this section, we intro-
duce how to apply UnionCut/UnionSeg to existing UOD
methods. Note that the methods designed by us are not
the only way to combine UnionCut/UnionSeg with exist-
ing UOD methods. We welcome the proposal of more
advanced combining methods to further enhance Union-
Cut/UnionSeg's boosting effect on UOD algorithms. More
technical details of this section can be seen in our code.

11.1. Basic Usage of UnionCut and UnionSeg
UnionCut and UnionSeg can be integrated into UOD algo-
rithms in various ways; here, we show their basic usage.
Assuming the foreground union U detected by UnionCut or
UnionSeg as the ground truth, the precision of a mask dis-
covered by UOD algorithms can be calculated by Eq. (14)

Precision(mask, U) = Area(mask∩U)
Area(mask) (14)

where Area(·) returns the area of a mask, based on which
UnionCut and UnionSeg can be utilized in two ways:
1) For judging whether a discovered area belongs to the
foreground, an area will be considered as part of the fore-
ground in the image if its precision is higher than a prede-
termined threshold θ (e.g. 0.5);
2) To determine when to stop further discovery, exploration
stops if the majority (a percentage γ, e.g. 80% area) of the
foreground union given by UnionCut or UnionSeg has been
discovered.

In practice, we recommend setting θ = 0.5 and γ = 0.8
when using the basic usage of UnionCut or UnionSeg.

11.2. LOST+UnionCut/UnionSeg

LOST [53]'s default foreground prior is as follows: An im-
age is divided into patches corresponding to the serialized
input of a ViT. The image is organized into a graph with
each patch as a node. For any two patches in the graph, they
are connected by links if their cosine similarity is more than
0. Then all patches are sorted by their degrees (i.e. the num-
ber of links connected to a patch) in ascending order, and
the first patch after being sorted is made as the foreground
seed based on the assumption made by Siméoni et al. that
the area occupied by the foreground should be smaller than
the background [53]. Then a discovered object region is ex-
panded from the foreground seed across the entire image.
More details can be found in [53].

In this paper, we combine LOST and Union-

Cut/UnionSeg by limiting the foreground seed selection
range within the foreground union output by Union-
Cut/UnionSeg, i.e. a patch will not be chosen as the seed
if it is not in the foreground union, even though its degree
is minimal. Besides, the discovered object area is expanded
from the seed across the region of the foreground union in-
stead of the entire image.

11.3. TokenCut+UnionCut/UnionSeg
TokenCut is a single-object discovery method that divides
an image into an object area and background (may con-
tain other objects). To combine TokenCut with Union-
Cut/UnionSeg, we replace its default foreground prior with
our approach, selecting the area with higher precision
(Eq. (14)) as the discovered object from the bipartition.

11.4. FOUND+UnionCut/UnionSeg
As introduced in Sec. 10, FOUND is trained based on the
output of FOUND- as pseudo-lables. We combine Union-
Seg/UnionCut with FOUND by making the FOUND trained
based on the intersection between FOUND-'s output and
foreground union by UnionSeg/UnionCut as the pseudo-
labels.

11.5. CutLER+UnionCut/UnionSeg
11.5.1. The pipeline of combining CutLER and UnionCut

or UnionSeg
CutLER detects multiple objects in three steps, as shown
in Fig. 8a: 1) MaskCut [69] (a UOD method) discovers
objects up to three times per image to generate pseudo-
annotations on ImageNet [17]; 2) training a Cascade Mask-
RCNN [7] with these pseudo-annotations; 3) using the
trained Cascade Mask-RCNN to update pseudo-annotations
and retraining the model. As depicted in Fig. 8b, we use
UnionCut/UniongSeg to eliminate errors from MaskCut,
enhancing the detector's performance after training. Specif-
ically, UnionCut/UniongSeg is integrated with CutLER at
its first step, i.e. MaskCut. Without a foreground prior,
MaskCut's excessive discovery leads to misidentifying the
background as the foreground, so Wang et al. [69] limits
MaskCut to three discoveries per image. Using Union-
Cut/UniongSeg, we can remove this balance and make
MaskCut stop when 80% of the foreground union given by
UnionCut/UniongSeg is detected, discarding discovered ar-
eas with precision (Eq. (14)) below 0.5. In the paper, all re-
sults related to CutLER and CutLER+UnionCut/UniongSeg
are performances of the Cascade Mask-RCNN after train-
ing.

11.5.2. Training Details of CutLER+UnionSeg
We use the official implementation of CutLER [69] in our
experiments, using our implementation of MaskCut [69]
with UnionSeg to replace the initial MaskCut in the original

CutLER. Following CutLER, a ViT-B/8 [19] pretrained by
DINO [9] is used as the image feature extractor for Mask-
Cut. In terms of training CutLER+UnionSeg, first, we make
our MaskCut+UnionSeg to conduct object discovery on all
images (1.28 million) from ImageNet. Due to the large
number of images to be processed, although our algorithm
can judge when to stop discovery, we additionally made
MaskCut+UnionSeg conduct up to 5 times exploration per
image. With 18 processes running simultaneously, it took
us 3 weeks to generate UOD results for all images, which
were used as pseudo-annotations of instance segmentation
for the dataset. Then, we used ImageNet and these pseudo-
annotations to train a Cascade Mask-RCNN model with
the official implementation of CutLER for 10,000 iterations
with a learning rate of 0.01 and weight decay of 0.001 as
a warm-up. After that, the trained model was used to up-
date pseudo-annotations for images in ImageNet. We fur-
ther trained the model for 60,000 external iterations with the
updated pseudo-annotations, using a learning rate of 0.005
and weight decay of 0.0001. All other settings, e.g. opti-
mizer, batch size and DropLoss threshold, were inherited
entirely from the official CutLER.

12. Performance Upper Boundary of UOD
Methods Designed for Multiple Objects
Discovery on Single Object Discovery

Single object discovery requires UOD algorithms to predict
only one bounding box for an image, and CorLoc is cal-
culated by checking if the predicted bounding box matches
any one object's annotation in the image. However, when
applying UOD methods able to predict multiple objects per
image to single object discovery, strategies of selecting only
one predicted bounding box are required to filter out re-
dundant predictions, e.g. selecting the predicted bounding
box of the largest area or highest confidence. However,
various strategies lead to different performances [54]. As
such, Rambhatla et al. [45] proposed to use average best
overlap [58] to evaluate the performance upper boundary of
UOD algorithms designed for multiple object discovery on
single object discovery. Specifically, each predicted bound-
ing box is compared with all ground truth bounding boxes in
an image. If any prediction matches a ground truth bound-
ing box, the UOD algorithm will be considered successful
on this image. The essence of this approach is the assump-
tion that an optimal strategy exists to select the predicted
box from a set of predictions which is most likely to match
the ground truth. Applying this assumed strategy allows for
measuring the UOD algorithm's performance on single ob-
ject discovery in an ideal scenario, i.e. its upper boundary
performance. We also try to apply this strategy to evalu-
ate the upper-boundary performance of CutLER (with or
without UnionSeg) on single object discovery. As shown

in Tab. 12, after considering the upper boundary, the per-
formance's upper boundary of CutLER is also increased by
UnionSeg and achieves state-of-the-art performance on all
three benchmarks, indicating the effectiveness of our pro-
posed UnionSeg.

Method UB VOC07 VOC12 COCO20K
- No learning -

Selective Search [58] 18.8 20.9 16.0
EdgeBoxes [80] 31.1 31.6 28.8
Kim et al. [30] 43.9 46.4 35.1
Zhang et al. [75] 46.2 50.5 34.8
DDT+ [70] 50.2 53.1 38.2
rOSD [61] 54.5 55.3 48.5
LOD [62] 53.6 55.1 48.5
DINO-seg [9, 53](ViT-S/16 [9]) 45.8 46.2 42.0
LOST [53](ViT-S/16 [9]) 61.9 64.0 50.7
DSS [40](ViT-S/16 [9]) 62.7 66.4 52.2
MOST [45] ! 74.8 77.4 67.1
TokenCut [21](ViT-S/16 [9]) 68.8 72.1 58.8
TokenCut(ViT-S/16 [9])+UnionCut 69.2(0.4↑) 72.3(0.2↑) 62.1(3.3↑)
TokenCut(ViT-S/16 [9])+UnionSeg 69.7(0.9↑) 72.7(0.6↑) 62.6(3.8↑)

- With learning -
FreeSOLO [54, 67] 44.0 49.7 35.2
LOD+CAD [21, 53] 56.3 61.6 52.7
rOSD+CAD [21, 53] 58.3 62.3 53.0
LOST+CAD [53](ViT-S/16 [9]) 65.7 70.4 57.5
SelfMask [52] 72.3 75.3 62.7
FOUND [54](ViT-S/16 [9]) 72.5 76.1 62.9
CutLER [69](ViT-B/8 [9])† 73.3 69.5 70.7
CutLER(ViT-B/8 [9])+UnionSeg 73.8(0.5↑) 71.2(1.7↑) 72.4(1.7↑)
CutLER [69](ViT-B/8 [9])† ! 87.3 84.3 89.3
CutLER(ViT-B/8 [9])+UnionSeg ! 87.4(0.1↑) 85.1(0.8↑) 89.3

Table 12. Performances of UOD methods on single object dis-
covery, with CorLoc as the metric and the upper boundary of
UOD methods detecting multiple objects considered. UB: the
short for Upper Boundary. CAD: a class-agnostic detector trained
with the output of no-learning UOD methods as the ground truth.
†: results of official implementations and checkpoints by our mea-
surement.

13. UnionCut's Effectiveness on Self-
supervised Instance Segmentation

In this section, CutLER (MaskCut) and TokenCut are com-
bined with UnionCut before being used to generate pseudo-
labels for images in the dataset. After that, these pseudo-
labels are used to train a class-agnostic SOLOv2 [65]
model. The subset (2913 images) of VOC2012 [22] where
images are with pixel-level annotations are used as the
benchmark for training and evaluating the performance of
the model [65] trained with pseudo-labels given by different
UOD algorithms. Five folds are used for cross-validation.
Specifically, for each fold, the dataset is divided into train-
ing, validation, and test sets in a ratio of 8:1:1. The model is
trained with images of the training part and corresponding
pseudo-labels generated by a UOD method. The model's
weights are saved for every 1000 iterations. The validation
set and handcrafted ground truth provided by VOC2012 are
used to evaluate the model's weights of each iteration. The
weights that perform best on the validation set are selected,

Method APmask
0.5 AP box

0.5

LOST† 10.2 14.9
MaskDistill‡ 11.3 16.2
TokenCut† 19.0 22.8
TokenCut+UnionCut 19.2(0.2↑) 22.9(0.1↑)
CutLER† 18.5 22.0
CutLER+UnionCut 20.9(2.4↑) 23.5(1.5↑)

Table 13. Performance reported on VOC12 of SOLOv2[65]
trained with pseudo-labels given by different UOD methods.
†: codes from the official implementation. ‡: our replication based
on the paper.

whose performance is evaluated with the test set with hand-
made ground truth and reported here. All training in this
experiment uses a fixed random seed of 3407 and trains the
model for 30, 000 iterations per fold. Models' parameters
are updated using an Adam optimizer [31] with a learning
rate 0.0001 and a mini-batch size 16. Average precision
(AP) is used as the metric. Consistent experimental setups
apply to all other UOD methods. Tab. 13 shows that Union-
Cut improves the quality of pseudo-labels given by Mask-
Cut and TokenCut, indicating its effectiveness in boosting
the performance of UOD methods as a robust foreground
prior.

Note that unlike Tab. 3 in Sec. 4.3 where ImageNet (1.28
million images) is used as the training set, considering the
computational cost of UnionCut, only VOC12 (2983 im-
ages with pixel-level annotations) is utilized for training the
model in this experiment, which is much fewer than Ima-
geNet. Since UnionSeg's effectiveness has been discussed
in Sec. 4.3 in terms of instance segmentation, this section
aims to show the effectiveness of UnionCut additionally and
is not for making the model achieve state-of-the-art perfor-
mance.

14. Examples of Images without Foreground
Union Fully Annotated

This section provides example images from VOC12, where
the union of the ground truth does not fully cover the fore-
ground union. As shown in Fig. 9, the keyboard, stereo,
cup, etc., are not labelled by the ground truth (the left col-
umn); the vase and light are not labelled (the mid column);
and the end table is not labelled (the right column).

15. Qualitative Analysis
In this section, we visualize and analyse how UnionCut and
UnionSeg boost the performance of our selected baseline
UOD algorithms, i.e. TokenCut and MaskCut, and provide
more visualization.

Foreground Judgement UnionCut/UnionSeg enables
UOD methods to judge if a discovered area belongs to the

Figure 9. Visualization of images in VOC12 whose ground
truth union do not cover the foreground union of the image.

foreground. Taking TokenCut as an example, as shown
in Fig. 10, TokenCut initially chooses the background part
from the bipartition as the discovered result. With Union-
Cut or UnionSeg, the segmentation mostly covered by the
foreground union is chosen to correct TokenCut's error.

Figure 10. TokenCut's errors fixed by UnionCut and UnionSeg.

Complete Discovery UnionCut/UnionSeg enables UOD
algorithms, especially those detecting multiple objects, to
judge when to stop further discovery without under or over-
discovery. Fig. 11 illustrates two examples where UnionCut
and UnionSeg help MaskCut remove a misidentified back-
ground area (the 1st row) and prevent missing one object
(the car on the left of the 2nd image) by ensuring the major-
ity of the foreground union is discovered.

Figure 11. Examples of removing MaskCut's detection errors and
making its discovery stop at appropriate time.

Additional Visualization Fig. 12 provides additional
qualitative results of different UOD methods, indicating
that UnionCut and UnionSeg detect foreground union accu-
rately, fix errors made by MaskCut without missing objects
or including background, and, as such, improve the perfor-
mance of MaskCut. Only MaskCut here (with or without

UnionSeg) conducts discovery multiple times, while others
conduct UOD one time per image. We made MaskCut con-
duct up to 3 times discovery per image following the rec-
ommendation of the original work [69]. As for our Mask-
Cut+UnionSeg, to show that UnionSeg enables UOD algo-
rithms to stop discovery at the appropriate time, we made
MaskCut+UnionSeg conduct up to 50 times discovery per
image.

Figure 12. Visualization of results given by different UOD algorithms. Masks of the same colour are the result of a one-time discovery.

	Introduction
	Related Work
	Self-supervised Representation Learning
	Unsupervised Object Discovery
	Foreground Priors
	Ensemble Methods

	Methodology
	Unit Voter
	UnionCut
	Thresholding
	Corner Prior

	UnionSeg

	Experiments
	Unsupervised Single Object Discovery
	Unsupervised Saliency Detection
	Self-supervised Instance Segmentation
	Properties of UnionCut and UnionSeg
	Ablation Study

	Conclusion
	Mathematical and Statistical Explanation for UnionCut
	Examples of Foreground Union Detection on Images with Large Foreground
	Comparison between UV and Straitforward Feature Matching
	Reliability of Corner Prior
	FOUND vs. UnionSeg
	Combining UnionCut/UnionSeg with Existing UOD methods and Implementation Details
	Basic Usage of UnionCut and UnionSeg
	LOST+UnionCut/UnionSeg
	TokenCut+UnionCut/UnionSeg
	FOUND+UnionCut/UnionSeg
	CutLER+UnionCut/UnionSeg
	The pipeline of combining CutLER and UnionCut or UnionSeg
	Training Details of CutLER+UnionSeg

	Performance Upper Boundary of UOD Methods Designed for Multiple Objects Discovery on Single Object Discovery
	UnionCut's Effectiveness on Self-supervised Instance Segmentation
	Examples of Images without Foreground Union Fully Annotated
	Qualitative Analysis

