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A. Appendix

The supplementary material is organized into the following
sections:
• Section B: More experimental settings. (i) Datasets in-

troduction (NTU-60, NTU-120, PKU-MMD); (ii) train-
ing strategy; (iii) parameter settings.

• Section C: Additional experiments. (i) Results on PKU-
MMD; (ii) results on different text feature extractors.

• Section D: Semantic-based action descriptions. (i)
Prompting examples; (ii) description examples.

• Section E: Calibrated alignment loss analysis. (i) Cal-
ibrated alignment loss explanation; (ii) extra ablation
study for calibrated alignment loss.

• Section F: Frequency-based skeleton representation
analysis. (i) Frequency domain representation and energy
preservation proof; (ii) semantic integrity with frequency
adjustment; (iii) frequency-based enhancement mecha-
nism; (iv) energy redistribution derivation; (v) illustration
example of frequency enhanced method; (vi) codes.

• Section G: Justification for choosing DCT.
• Section H: NTU-60 dataset action index.

B. More Experiments Settings

B.1. Datasets
NTU RGB+D 60 [18]. The NTU-60 dataset is one of the
most popular large-scale datasets designed for the analy-
sis of 3D human actions. It comprises 56,880 human ac-
tion sequences captured by three Kinect-V2 cameras, cov-
ering 60 distinct action classes. In this work, we use only
the skeleton data. Each skeleton sequence consists of up to
two skeletons per frame, with each skeleton containing 25
joints. In this paper, two seen/unseen splits are employed,
following prior work [5]: 55 seen classes and 5 unseen
classes, and 48 seen classes and 12 unseen classes. The
unseen classes are randomly selected, maintaining consis-
tency with previous studies.

Table 1. Zero-Shot Learning (ZSL) and Generalized Zero-Shot
Learning (GZSL) results on PKU-MMD (46/5 split).

Methods Venue ZSL (ACC,%)
GZSL (ACC,%)

Seen Unseen H
ReViSE[8] ICCV2017 59.3 60.9 42.2 49.8
JPoSE[19] ICCV2019 57.2 60.3 45.2 51.6

CADA-VAE[16] CVPR2019 60.7 63.2 35.9 45.8
SynSE[5] ICIP2021 53.9 63.1 40.7 49.5
SMIE[22] ACMM2023 60.8 - - -

SA-DVAE[11] ECCV2024 66.5 58.5 51.4 54.7
Ours \ 71.2↑4.7 64.3 54.5↑3.1 59.0↑4.3

Table 2. Comparisons of different text feature extractors in ZSL.

Model
NTU-60 (ACC,%) NTU-120 (ACC,%)

55/5 split 48/12 split 110/10 split 96/24 split
ViT-B/16 84.2 49.4 72.7 60.2
ViT-B/32 86.9 57.2 74.4 62.5

NTU RGB+D 120 [13]. The NTU-120 dataset is an ex-
tended version of NTU-60. It includes 114,480 action se-
quences performed by 106 subjects from 155 distinct view-
points, spanning 120 action classes. These 120 classes build
upon the original 60 classes in NTU-60, offering a broader
range of human actions. For zero-shot learning, the dataset
adopts seen/unseen splits of 110 seen classes and 10 unseen
classes, and 96 seen classes and 24 unseen classes, consis-
tent with the splits defined in [5].

PKU-MMD [12]. The PKU-MMD dataset is a large-
scale benchmark for multimodal action recognition, provid-
ing both 3D skeleton sequences and RGB+D recordings. It
consists of 66 subjects and 51 classes. We conduct the ex-
periments on Phase I following the protocols from [10, 11]
and the skeleton features provided by [11] for a fair compar-
ison (skeleton features are generated by ST-GCN[21], 46/5
split settings, 46 seen classes and 5 unseen classes).

B.2. Training Strategy
The training phase follows the same processing procedure
as [10], which is systematically organized into four stages:
training the skeleton feature extractor to capture spatio-
temporal dependencies, optimizing the generative cross-
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Table 3. Comparisons of different text feature extractors in GZSL.

Model
NTU-60 (55/5 split) NTU-60 (48/12 split) NTU-120 (110/10 split) NTU-120 (96/24 split)

Seen Unseen H Seen Unseen H Seen Unseen H Seen Unseen H
ViT-B/16 65.1 71.0 67.9 61.0 39.4 47.9 55.5 68.9 61.4 56.6 47.7 52.6
ViT-B/32 77.0 74.5 75.7 56.2 48.6 52.1 59.2 67.9 63.3 57.8 51.9 54.7

modal alignment module to bridge the skeleton and seman-
tic features, training the unseen class classifier for general-
ization, and the seen-unseen classification gate for accurate
category differentiation.

B.3. Parameter Settings
Table 7 shows the parameter settings of our method, in-
cluding the parameters applied during all the training stages
mentioned in the main paper and [10].

C. More Experiments
Results on PKU-MMD. Table 1 presents the ZSL and
GZSL performance on the PKU-MMD dataset under the
46/5 split settings [11]. Our approach consistently out-
performs prior methods in both ZSL and GZSL settings,
demonstrating its effectiveness in recognizing unseen ac-
tions while maintaining strong generalization.

Comparisons of Different Text Feature Extractors.
We evaluate two CLIP-based text encoders, ViT-B/16 and
ViT-B/32, for ZSSAR and GZSSAR tasks on NTU-60 and
NTU-120 datasets. As shown in Table 2, ViT-B/32 achieves
higher ZSL accuracies in all splits, e.g., 86.9% vs. 84.2% on
the NTU-60 55/5 split. For GZSSAR in Table 3, ViT-B/32
also outperforms ViT-B/16 in harmonic mean (H-score),
e.g., 75.7% vs. 67.9% on the NTU-60 55/5 split. Based on
these results, we use ViT-B/32 as the text feature extractor
in subsequent experiments.

D. Semantic-based Action Descriptions
Global Action Description Prompting Examples. ”De-
scribe the action of [ACTION NAME] by summarizing its
overall motion pattern and intent. Focus on the key move-
ments that define the action as a whole. Avoid excessive
details about specific joints but ensure the description cap-
tures how the action is performed in a natural way. For
example, describe how objects are manipulated, how body
posture changes, or the general sequence of motion from
start to finish.”

Local Action Description Prompting Examples. ”De-
scribe the action of [ACTION NAME] by detailing the pre-
cise movements of the hands, arms, or other involved body
parts. Provide a step-by-step breakdown of how the action
is executed at a fine-grained level, emphasizing joint mo-
tion, hand positioning, and transitions. Ensure the descrip-
tion remains human-readable and avoids overly technical
terminology.”

Description Examples. Table 8 illustrates how our
method refines action descriptions by incorporating both
global and local semantic components. Compared to the
baseline[10], which provides a vague summary, our ap-
proach explicitly decomposes actions into structured rep-
resentations.

For example, in the action “drinking water ”, the baseline
only mentions the ingestion process, whereas our Global
action Description (GD) highlights the sequential motion of
“grasping an object, raising it to the head, and simulating
a drinking motion”, capturing the structural essence of the
action. Meanwhile, Local action Description (LD) provides
finer details, such as “moving the fist up to the head and
looking slightly downward”, which are critical for distin-
guishing similar actions like “eating”.

Similarly, for “Brushing Teeth”, the baseline merely de-
scribes the purpose of the action (“to clean teeth with a
brush”), but GD focuses on the characteristic motion of
“moving a toothbrush back and forth”, while the LD re-
fines it further by specifying “hand movement towards the
head followed by wrist tremble”. This level of granularity
ensures better alignment between textual descriptions and
skeleton-based representations.

These examples demonstrate that our description method
not only improves semantic precision, which is crucial for
robust skeleton-based action recognition. By explicitly de-
composing actions into structured representations that en-
compass both global motion patterns and localized details,
the model gains a more comprehensive understanding of ac-
tion semantics. This enriched textual description provides
a stronger supervision signal for aligning skeleton features
with semantic embeddings, thereby reducing ambiguities in
action recognition.

E. Analysis of Calibrated Alignment Loss

E.1. Calibrated Loss Explanation

In this section, we break down the loss function to analyze
how the calibrated alignment loss operates. Without loss
of generality, consider a multi-class classification problem
with three classes: Class 1, Class 2, and Class 3. Each class
is associated with a ground truth distribution, denoted as P1,
P2, and P3. Assume we collect a dataset as follows: 1) S1

with n1+ñ data points in total, where n1 points are sampled
from the distribution P1, and we let S̃ denote ñ points from
P2. 2) S2, containing n2 points sampled from P2. 3) S3,
containing n3 points sampled from P3.



We identify two types of potential errors: (1) misalign-
ing points in S̃ with the text features of Class 1, and (2)
incorrectly enforcing S̃ to be far from the text features of
Class 2.

For simplicity, we focus on the first term in LAlign, as
the second term follows a similar structure. Let fk

t denote
the text feature of Class k, where k ∈ 1, 2, 3. Denote

L1
Align :=

3∑
q=1

λ
∑
m̸=q

∑
i∈Sq

∑
j∈Sm[
1

1 + exp((∥fq
t − gst (j)∥2 − ∥fq

t − gst (i)∥2)/λ)

]
.

(1)

Let
Lq,m := λ

∑
i∈Sq

∑
j∈Sm

ℓq(i, j), (2)

where

ℓq(i, j) =
1

1 + exp((∥fq
t − gst (j)∥2 − ∥fq

t − gst (i)∥2)/λ)
.

(3)
Rearranging the terms, we can rewrite the loss function

as

L1
Align = L1,2 + L1,3 + L2,1 + L2,3 + L3,1 + L3,2, (4)

where

L1,2 = λ
∑

i∈S1/S̃

∑
j∈S2

ℓ1(i, j) + λ
∑
i∈S̃

∑
j∈S2

ℓ1(i, j)

︸ ︷︷ ︸
(A)

. (5)

L1,3 = λ
∑

i∈S1/S̃

∑
j∈S3

ℓ1(i, j) + λ
∑
i∈S̃

∑
j∈S3

ℓ1(i, j)

︸ ︷︷ ︸
(B)

. (6)

L2,1 = λ
∑
i∈S2

∑
j∈S1/S̃

ℓ2(i, j) + λ
∑
i∈S2

∑
j∈S̃

ℓ2(i, j)

︸ ︷︷ ︸
(C)

. (7)

L2,3 = λ
∑
i∈S2

∑
j∈S3

ℓ2(i, j) (8)

L3,1 = λ
∑
i∈S3

∑
j∈S1/S̃

ℓ3(i, j) + λ
∑
i∈S3

∑
j∈S̃

ℓ3(i, j)

︸ ︷︷ ︸
(D)

(9)

L3,2 = λ
∑
i∈S3

∑
j∈S2

ℓ3(i, j) (10)

We observe that the noisy subset S̃ is only involved in
terms A, B, C, and D. Although term D involves S̃, it does
not lead to misalignment, as it merely encourages the text
of Class 3 to be similar to other text from Class 3 and dis-
similar to S̃. Since S̃ is generated from P2, this is a valid
operation. Terms A and C can be addressed in the following
theorem.

Theorem 1. For the data sets generated as described above
and the loss function defined accordingly, the terms A and
C are equal to constants in expectation, i.e.,

ES1,S2,S3
[A] = ES1,S2,S3

[C] = 1. (11)

Proof. For term A, we have

ES̃,S2

λ∑
i∈S̃

∑
j∈S2

ℓ1(i, j)

 = λñn2Ei∈P2
Ej∈P2

ℓ1(i, j)

= λñn2Ei∈P2
Ej∈P2

ℓ1(i, j) + ℓ1(j, i)

2
,

(12)

where

ℓ1(i, j) + ℓ1(j, i)

2

=
1

1 + exp((∥f1
t − gst (j)∥2 − ∥f1

t − gst (i)∥2)/λ)

+
1

1 + exp((∥f1
t − gst (i)∥2 − ∥f1

t − gst (j)∥2)/λ)

=
exp((∥f1

t − gst (i)∥2 − ∥f1
t − gst (j)∥2)/λ)

1 + exp((∥f1
t − gst (i)∥2 − ∥f1

t − gst (j)∥2)/λ)

+
1

1 + exp((∥f1
t − gst (i)∥2 − ∥f1

t − gst (j)∥2)/λ)
= 1.

(13)

Similarly, for term C we obtain that

ES2,S̃

λ∑
i∈S2

∑
j∈S̃

ℓ2(i, j)

 = λn2ñEi∈P2Ej∈P2ℓ
2(i, j)

= λn2ñEi∈P2
Ej∈P2

ℓ2(i, j) + ℓ2(j, i)

2
,

(14)



where

ℓ2(i, j) + ℓ2(j, i)

2

=
1

1 + exp((∥f2
t − gst (j)∥2 − ∥f2

t − gst (i)∥2)/λ)

+
1

1 + exp((∥f2
t − gst (i)∥2 − ∥f2

t − gst (j)∥2)/λ)

=
exp((∥f2

t − gst (i)∥2 − ∥f2
t − gst (j)∥2)/λ)

1 + exp((∥f2
t − gst (i)∥2 − ∥f2

t − gst (j)∥2)/λ)

+
1

1 + exp((∥f2
t − gst (i)∥2 − ∥f2

t − gst (j)∥2)/λ)
= 1.

(15)

For term B, which is given by∑
i∈S̃

∑
j∈S3

ℓ1(i, j) =

1

1 + exp((∥f1
t − gst (j)∥2 − ∥f1

t − gst (i)∥2)/λ)
,

(16)

note that ∥f1
t −gst (i)∥2 represents a misalignment term, but

it can be partially balanced by ∥f1
t − gst (j)∥2. Additionally,

the term B does not exist in the case of a binary classifica-
tion problem.

E.2. Extra Ablation Study for Calibrated Align-
ment Loss

In this subsection, we compare our results with those ob-
tained using triplet losses as alignment losses. Although
triplet losses also consider both positive and negative pairs,
most of them do not satisfy the symmetric property, making
them less robust to noisy features. The results are summa-
rized in Table 4.

Specifically, the triplet alignment losses are developed
based on popular triplet loss formulations, as follows. First,
following the work of [17], we define:

LT,1 =
1

B

∑
i∈B

max(∥ft(i) − g
s
t (i)∥

2 − ∥ft(i) − g
s
t (i

−
)∥2

+ m, 0)

+
1

B

∑
i∈B

max(∥fs(i) − g
t
s(i)∥

2 − ∥fs(i) − g
t
s(i

−
)∥2

+ m, 0),

(17)

which m is a margin term. It is not globally symmetric due
to max(·, 0) function.

Second, following [4, 6], we define

LT,2 =
1

B

∑
i∈B

log
1

1 + exp((∥ft(i) − gs
t (i

−)∥2 − ∥ft(i) − gs
t (i)∥2)/λ)

+
1

B

∑
i∈B

log
1

1 + exp((∥fs(i) − gt
s(i

−)∥2 − ∥fs(i) − gt
s(i)∥2)/λ)

,

(18)

which is non-symmetric due to the log function.
Third, following [7], we define

LT,3 =
λ

B

∑
i∈B

(
exp(∥ft(i) − gs

t (i)∥2

exp(∥ft(i) − gs
t (i)∥2 + exp((∥ft(i) − gs

t (i
−)∥2)

)2

+
λ

B

∑
i∈B

(
exp(∥fs(i) − gt

s(i)∥2)

exp(∥fs(i) − gt
s(i)∥2) + exp(∥fs(i) − gt

s(i
−)∥2)

)2

,

(19)

which is non-symmetric due to the squared function.
Fourth, following [9], we define

LT,4 =
1

B

∑
i∈B

max

(
1 −

∥ft(i) − gs
t (i

−)∥2

∥ft(i) − gs
t (i)∥2 + m

, 0

)

+
1

B

∑
i∈B

max

(
1 −

∥fs(i) − gt
s(i

−)∥2

∥fs(i) − gt
s(i)∥2 + m

, 0

)
,

(20)

which is also non-symmetric.
In the experiments of this subsection, the only distinction

between our method and the others lies in the formulation
of the alignment loss. As shown in Table 4, although most
of these methods outperform the baselines in the literature
of ZSSAR, they perform significantly worse than ours with
the calibrated alignment loss due to their absence of sym-
metry. This emphasizes the effectiveness of our alignment
loss design.

Table 4. ZSL accuracy with different alignment loss.

Alignment
Loss

NTU-60 (ACC,%) NTU-120 (ACC,%)
55/5 split 48/12 split 110/10 split 96/24 split

LT,1 84.4 45.3 72.7 58.6
LT,2 79.9 32.0 59.1 38.7
LT,3 83.8 49.5 71.8 60.7
LT,4 85.3 42.2 69.0 49.7
Ours 86.9 57.2 74.4 62.5

F. Frequency-based Representation Analysis
for Skeleton Sequences

F.1. Motivation
The Discrete Cosine Transform (DCT) enables lossless fea-
ture enhancement through energy-preserving manipulation.
The key sight is that the strict energy preservation of DCT
and Inverse-DCT (IDCT) between the frequency and time
domains: enhanced components in the frequency do-
main can be transferred to the time-domain features
through IDCT without information loss. This allows dual
semantic enhancements: 1) amplifying low-frequency co-
efficients enhances global motion patterns (e.g., overarch-
ing torso coordination), 2) refining high-frequency compo-
nents preserves fine-grained kinematics (e.g., hand trajec-
tories) while mitigating the noise. Moreover, this energy-
invariant enhancement provides richer information repre-
sentations for further alignment, where cross-modal corre-
spondences can be learned from both global and local action
semantics.



F.2. Frequency Domain Representation and Energy
Preservation Proof

Let s ∈ RJ×C×F denote a skeleton sequence in the time do-
main, where J is the number of body joints (e.g., 25 joints
in NTU-RGB+D dataset), C is the number of coordinate
dimensions (C = 3 for x, y, z coordinates), and F is the
temporal length (number of frames). The frequency-domain
representation C ∈ RJ×C×F is obtained through the or-
thogonal DCT. For each joint j ∈ {1, . . . , J}, coordinate
c ∈ {1, . . . , C}, and frequency index i ∈ {0, . . . , F − 1},
the transformation is defined as:

Cj,c,i =

F−1∑
f=0

sj,c,f · ϕi(f) (21)

where the normalized DCT basis functions ϕi(f) are given
by:

ϕi(f) =

√
2− δi0

F
· cos

[
π

F

(
f +

1

2

)
i

]
, (22)

with δi0 denoting the Kronecker delta function (i.e., δi0 = 1
when i = 0 and δi0 = 0 otherwise), and f ∈ {0, . . . , F −
1}.

For any joint j and coordinate c, the energy equivalence
between the time and frequency domains is proved as fol-
lows:

Efreq,j,c =

F−1∑
i=0

C2
j,c,i

=

F−1∑
i=0

F−1∑
f=0

sj,c,f ϕi(f)

2

=

F−1∑
i=0

F−1∑
f=0

F−1∑
f ′=0

sj,c,f sj,c,f ′ ϕi(f)ϕi(f
′)

=

F−1∑
f=0

F−1∑
f ′=0

sj,c,f sj,c,f ′

F−1∑
i=0

ϕi(f)ϕi(f
′)

=

F−1∑
f=0

s2j,c,f = Etime,j,c.

(23)

The orthogonality relationship [15]

F−1∑
i=0

ϕi(f)ϕi(f
′) =

{
1, if f = f ′

0, if f ̸= f ′

eliminates cross-terms between different frames (f ̸=
f ′). Consequently, the energy preservation holds globally:

J∑
j=1

C∑
c=1

F−1∑
f=0

s2j,c,f =

J∑
j=1

C∑
c=1

F−1∑
i=0

C2
j,c,i. (24)

F.3. Semantic Integrity with Frequency Adjustment
Given modified coefficients C ′

j,c,i = Cj,c,i · g(i) with scal-
ing function g(i), the reconstructed signal becomes:

s′j,c,f =

F−1∑
i=0

C ′
j,c,iϕi(f) =

F−1∑
i=0

g(i)Cj,c,iϕi(f) (25)

The modified energy preserves the relationship:

E′
time,j,c =

F−1∑
f=0

(s′j,c,f )
2

=

F−1∑
f=0

(
F−1∑
i=0

g(i)Cj,c,iϕi(f)

)2

=

F−1∑
i=0

F−1∑
k=0

g(i)g(k)Cj,c,iCj,c,k

F−1∑
f=0

ϕi(f)ϕk(f)︸ ︷︷ ︸
δik

=

F−1∑
i=0

g(i)2C2
j,c,i = E′

freq,j,c

(26)
This derivation demonstrates three key properties: First,

the orthogonal basis eliminates cross-frequency interfer-
ence during adjustment (δik removes terms where i ̸= k),
ensuring distortion-free modifications. Second, energy re-
distribution follows E′

time =
∑

i g(i)
2C2

i , allowing con-
trolled enhancement (g(i) > 1) or suppression (g(i) < 1) of
specific frequency. Third, semantic integrity is maintained
through the physical meaning of frequency components -
low frequencies (i ≤ φ) encode global motion trajectories,
while high frequencies (i > φ) capture local kinematic de-
tails (φ is the low-frequency threshold), enabling targeted
manipulation without corrupting overall motion semantics.

F.4. Frequency-based Enhancement Mechanism
Since semantic information in skeleton motion is inher-
ently tied to frequency components, higher energy indicates
richer information, while energy distribution across fre-
quencies highlights different motion scales. Thus, enhanc-
ing skeleton-based frequency components in the frequency
domain enriches semantic representation in the time domain
(proved above, semantic integrity is preserved during DCT-
IDCT), leading to improved generalization in ZSL. This
mechanism consists of two adjustments:

Low-Frequency Enhancement. The amplification term
wi

(
1− i

b

)
is designed to emphasize fundamental move-

ment patterns in skeletal dynamics. By progressively re-
ducing the enhancement effect as frequency increases, this
mechanism ensures that low-frequency components, which



Property DCT Wavelet

Energy Compaction Strong global compaction Localized
Coefficient Control Easy frequency separation Requires multi-scale design
Integration Simple matrix operations Needs wavelet basis selection
Usage Semantic enrichment Fine-grained separation

Table 5. Comparison between DCT and Wavelet in terms of structural properties and usage for representation learning.

encode the overall motion structure, are strengthened with-
out distorting the natural motion flow. For whole-body ac-
tions such as “walking” or “clapping,” it enhances limb co-
ordination and preserves joint continuity.

High-Frequency Suppression. The attenuation term
−wi

(
1− i−b

b

)
is designed to progressively reduce the sup-

pression effect as frequency increases. This ensures that
while high-frequency components are attenuated to miti-
gate noise and skeletal jitter, fine-grained and rapid mo-
tion details are not excessively diminished. The parameter b
controls the rate of suppression decay, allowing higher fre-
quency components to retain essential micro-movements,
such as finger and wrist gestures.

F.5. Illustration
We also provide the illustration example of our frequency-
enhanced mechanism in Fig. 1. Assume the number of
the DCT coefficients is 20, the low-frequency threshold φ
is 15. As shown in the figure, in the low-frequency range
(i ≤ φ), the enhancement applied to the low-frequency co-
efficients gradually decreases, allowing a smooth transition
while preserving global motion integrity. Meanwhile, in the
high-frequency range (i > φ), the suppression of high-
frequency coefficients diminishes progressively, allowing
essential fine-grained motion details to be retained while
mitigating noise.

F.6. Code
The key part of the implementation of the frequency-
enhanced module in our method is presented in Fig. 2. The
code snippet provided illustrates the core mechanism of our
frequency-aware enhancement strategy within the skeleton
decoder. The codes for frequency adjustment with purely
learnable weight are also provided in Fig. 3. Extra ablation
study and discussion are provided in the main paper.

G. Justification for Choosing DCT

We adopt the Discrete Cosine Transform (DCT) as our fre-
quency encoding method due to its strong energy com-
paction property and its ability to flexibly separate low- and
high-frequency components. These characteristics make
it particularly effective for semantic representation learn-
ing in zero-shot settings, where training data is limited and
fine-grained generalization is critical. Specifically, DCT

helps preserve global motion information while enabling lo-
calized modulation. This frequency-aware modulation en-
riches latent representations without requiring strict tempo-
ral alignment, aligning well with the post-encoded features.

As shown in Table 5, while wavelet transforms are also
viable for signal analysis, they are primarily designed for
multi-scale, localized analysis and often require more com-
plex basis selection and hierarchical decomposition. In con-
trast, DCT is lightweight, easily integrable through matrix
operations, and offers more straightforward control over
frequency bands for modulation. Our use of DCT is not
intended as a traditional frequency separation mechanism,
as in prior fully-supervised methods[2, 20], but as a seman-
tic enhancement strategy to improve generalization under
zero-shot learning.

H. NTU-60 Dataset Action Index
We also provide the list of action indices from the NTU-60
dataset in Table 6.



Table 6. NTU-60 action classes and their corresponding indices.

Index Action
1 Drink water
2 Eat meal
3 Brush teeth
4 Brush hair
5 Drop
6 Pick up
7 Throw
8 Sit down
9 Stand up

10 Clapping
11 Reading
12 Writing
13 Tear up paper
14 Put on jacket
15 Take off jacket
16 Put on a shoe
17 Take off a shoe
18 Put on glasses
19 Take off glasses
20 Put on a hat/cap
21 Take off a hat/cap
22 Cheer up
23 Hand waving
24 Kicking something
25 Reach into pocket
26 Hopping
27 Jump up
28 Phone call
29 Play with phone/tablet
30 Type on a keyboard
31 Point to something
32 Taking a selfie
33 Check time (from watch)
34 Rub two hands together
35 Nod head/bow
36 Shake head
37 Wipe face
38 Salute
39 Put palms together
40 Cross hands in front
41 Sneeze/cough
42 Staggering
43 Falling down
44 Headache
45 Chest pain
46 Back pain
47 Neck pain
48 Nausea/vomiting
49 Fan self
50 Punch/slap
51 Kicking
52 Pushing
53 Pat on back
54 Point finger
55 Hugging
56 Giving object
57 Touch pocket
58 Shaking hands
59 Walking towards
60 Walking apart



Figure 1. The illustration example of the frequency-enhanced method.

Table 7. Implementation details and parameter settings.

Datasets NTU-60 NTU-120
Skeleton Feature Extractor Shift-GCN [3]
Text Feature Extractor CLIP-ViT-B32/16 [14]
Latent Embedding Dim (Stage 1) 256 512
Latent Embedding Dim (Stage 2) 100 200
Optimizer Adam
Learning Rate (Stage 2) 1.0× 10−4

Batch Size (Stage 2) 64
Training Epochs (Stage 2) 1900
Unseen Class Features Dim (Stage 3) 500
Unseen Classifier Epochs (Stage 3) 300
Unseen Classifier Learning Rate 1.0× 10−3

Classification Gate Logistic Regression (LBFGS, C = 1)
Frequency Module DCT-IDCT [1]
Frequency Parameters φ = 35, b = 30
Semantic Descriptions GPT-4 Generated (LD+GD)
Calibrated Loss α 0.1
Calibrated Loss λ 100
Hardware NVIDIA A100 × 1

Table 8. Examples of action descriptions between baseline and our method.

Action Baseline Description Global Description (Ours) Local Description (Ours)

Eating Meal/Snack to put food in your mouth, bite
it, and swallow it

to pick up food with your hand or utensil,
move it to the mouth, and chew

pinch and move the hand up to the head

Brushing Teeth to clean, polish, or make teeth
smooth with a brush

to move a toothbrush back and forth inside
your mouth

move the hand up to the head, then tremble
the wrist

Brushing Hair to clean, polish, or make hair
smooth with a brush

to run a brush or comb through your hair to
smooth it

move the hand up to the head, then move
the hand downward

Dropping an Object to allow something to fall by ac-
cident from your hands

to release an object, letting it fall freely to
the ground

release the hand in front of the middle of
the body



1 # x = input data
2 # dct = Discrete Cosine Transform function
3 # b = adjusting parameter
4 # freq_weight = learnable weight for frequency
5 # split_freq = threshold for low- and high-frequency adjustment
6 def dct_enhance(self, x):
7 # Apply DCT to transform input to the frequency domain
8 x_dct = dct.dct(x, norm=’ortho’)
9 # Frequency enhancement

10 for i in range(self.length_input):
11 start = self.split_points[i]
12 end = self.split_points[i + 1]
13 freq_weight = self.freq_weight[i]
14 # Low-frequency adjustment
15 if end <= self.split_freq:
16 # Scaling function for low frequency
17 decay_factor = 1 - i / self.b
18 x_dct[:, start:end] *= (1 + freq_weight * decay_factor)
19 # High-frequency adjustment
20 else:
21 # Scaling function for high frequency
22 decay_factor = 1 - (i - self.b) / self.b
23 x_dct[:, start:end] *= (1 - freq_weight * decay_factor)
24 # Inverse DCT to transform back to the time domain
25 return dct.idct(x_dct, norm=’ortho’)

Figure 2. PyTorch codes for frequency enhancement in the encoder.

1 def dct_enhance(self, x):
2 # Apply DCT to transform input to frequency domain
3 x_dct = dct.dct(x, norm=’ortho’)
4 for i in range(self.length_input):
5 start = self.split_points[i]
6 end = self.split_points[i + 1]
7 freq_weight = self.freq_weight[i]
8 # Apply learnable weight directly
9 x_dct[:, start:end] *= freq_weight

10 # Inverse DCT to transform back to time domain
11 return dct.idct(x_dct, norm=’ortho’)

Figure 3. PyTorch codes for frequency enhancement with pure learnable weights.
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