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S1. MAR
In this section, we provide more details of MAR [17].
Model Details. The MAR models in [17] follow the
encoder-decoder architecture of MAE [12], and are trained
on ImageNet1K [6] for image generation. Class embed-
dings are fed into the MAR encoder for class-conditional
generation. An extra null embedding representing an empty
class is also included for unconditional generation. In Har-
mon, we discard class embeddings and only use the null
embeddings in MAR’s forward pass (referred to as buffer
embeddings in the main text). As a generation model, MAR
follows the common practice [24–26] to compress images
into VAE latents before feeding to MAR’ encoder. For
brevity, we omit the VAE part in our illustration of Harmon.
Potential for Understanding & Generation. We provide
more visualization results in Figure S1 to unveil the MAR’s
potential for both visual understanding and generation. The
feature activations in the second row of Figure S1 indicate
that the MAR encoder has grasped essential visual concepts
in its generative training. Then we map the encoder features
back to image contents using the MAR decoder. It is note-
worthy this operation is performed in a zero-shot manner
as the MAR is trained for predicting unseen patches instead
of pixel-level recovery. The results in the third row of Fig-
ure S1 suggest the MAR encoder’s representation also con-
tains intrinsic imagery features that are necessary for visual
generation.

S2. Training Data
We provide details of out training data, including data
sources and re-captioning processes.

S2.1. Image Understanding
Stage I. The 22M images with dense captions in stage
I are sourced from LLaVA-ReCap-CC3M [16], Pixel-

Prose [29], DenseFusion [18] and the pre-training dataset
of MiniGemini [19] and ShareGPT4V [3]. The dense cap-
tions in LLaVA-ReCap-CC3M are generated by LLaVA-
NeXT-34B [16]. The PixelProse dataset comprises 16M im-
ages from CommonPool [10], CC12M [1] and RedCaps [7],
which are re-captioned by Gemini-1.0-Pro-Vision [30].
DenseFusion labels 1M images from LAION [28] using a
trained caption engine.
Stage II. The 20M comprehensive instruction-tuning data
in stage II are from the Infinity-MM-Stage3 [11]. And extra
5M dense-captioned images are randomly sampled from the
22M images in our stage I.
Stage III. In the high-quality fine-tuning stage, we directly
use instruction-tuning data from LLaVA-One-Vision [16]
for image understanding.

S2.2. Image Generation
Stage I. For class-conditional image generation in stage I,
we use ImageNet1K [6] with 1.2M data samples, treating
class names as image captions.
Stage II. For text-to-image generation, we first rewrite the
22M dense captions in stage I into shorter descriptions with
Qwen2.5-7B-Instruct [36], using the following prompt:
“Here is a detailed image description:
<caption>. Rewrite it into a much
shorter, vivid, and visually rich
sentence (one or two sentences) that
captures only the most essential
elements and atmosphere of the scene.
Ensure the description is concise,
clear, and optimized for use with a
text-to-image generation model.”
Here, <caption> stands for the dense caption.

In addition, we import datasets specially collected
for image generation, including PD12M [21], Me-
galith10M [20] and LAION-Aesthetics [5]. Like the prior
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Figure S1. We visualize activations on MAR’s feature maps in the second row, which reveal precise responses to visual concepts. In the
third row, we observe that the features can also be mapped back to image pixels, indicating that the MAR features also comprise low-level
image intrinsics.

22M dense caption data, the PD12M dataset is originally la-
belled with detailed image descriptions. Therefore, we also
use Qwen2.5-7B-Instruct to re-write all the image descrip-
tions with the prompt defined above. For Megalith10M, we
directly use the short captions provided by [8]. For LAION-
Aesthetics, we crawled 6M images using their urls and la-
belled them with precise generation prompts by Qwen2-
VL-72B [31].

In total, we collect 50M data samples for training text-
to-image generation in stage II.
Stage III. For high-quality text-to-generation, we apply an
aesthetic prediction model [5] to score the 50M images in
stage II. Only images with aesthetic scores beyond 6.5 are
preserved. Further, we discard images with extreme height-
width ratios. Finally, 10M images are selected for stage
II. Additionally, we obtain 6M synthetic images from Jour-
neyDB [23] and Text-to-Image-2M [13] to further enhance
visual quality.

S3. More results

S3.1. Benchmark Results

We assess Harmon’s ability to understand complex seman-
tic and world knowledge using the WISE benchmark [22],
where implicit prompts like “Einstein’s favorite
musical instrument” are provided. As shown in Ta-
ble S3, Harmon archives the best performance among all
compared unified models.

S3.2. Inference Speed

By default, we adopt 64 forward passes for generation, cost-
ing 10s/30s for Harmon-0.5B/1.5B on an A100 GPU. To
speed up inference, we can reduce the forward steps to 16

(3s/8s) without an obvious performance drop on GenEval
as shown in Table S2.

S3.3. Visualization

Qualitative Comparison. We provide qualitative com-
parison on text-to-image generation in Figure S2 and Fig-
ure S3. Here, we compare Harmon-1.5B with unified
models including VILA-U [34], Show-o [35] and Janus-
Pro [4](1.5B). Besides, we also include SDXL [25], an ad-
vanced expert model for visual generation. Harmon pro-
duces results comparable to SDXL in terms of visual qual-
ity, and exhibits better prompt-mage consistency. For ex-
ample, SDXL fails to follow the position relations defined
by ‘A dog on the left and a cat on the right’ in Figure S2.

More Gen. & Und. Results. We show more examples of
Harmon-1.5B performing text-to-image generation in Fig-
ure S4 and multimodal understanding in Figure S5.

S4. Limitations

Despite promising results on both visual understanding and
generation tasks, the current version of Harmon has the fol-
lowing limitations.

Model Scale. Our model scale is limited to 1.5B and we
will further scale up the model size in the future.

Pre-training of MAR. The MAR models are originally pre-
trained on the 1.2M data samples of ImageNet1K, which
is orders of magnitude fewer than the billion-scale train-
ing of semantic encoders like CLIP and SigLIP. This gap
in data scale hinders further improvement of Harmon in un-
derstanding tasks.



Table S1. Evaluation of text-to-image generation on WISE benchmark. Gen. Only stands for models trained for image generation only.

Type Method Cultural Time Space Biology Physics Chemistry Overall↑

Gen. Only

SDv1.5 [27] 0.34 0.35 0.32 0.28 0.29 0.21 0.32
SDv2.1 [27] 0.30 0.38 0.35 0.33 0.34 0.21 0.32
Emu3-Gen [32] 0.34 0.45 0.48 0.41 0.45 0.27 0.39
FLUX.1-schnell [15] 0.39 0.44 0.50 0.31 0.44 0.26 0.40
SD3-Medium [9] 0.42 0.44 0.48 0.39 0.47 0.29 0.42
SDXL [25] 0.43 0.48 0.47 0.44 0.45 0.27 0.43
SD3.5-Large [9] 0.44 0.50 0.58 0.44 0.52 0.31 0.46
PixArt-α [2] 0.45 0.50 0.48 0.49 0.56 0.34 0.47
FLUX.1-dev [15] 0.48 0.58 0.62 0.42 0.51 0.35 0.50

Unified

Janus [33] 0.16 0.26 0.35 0.28 0.30 0.14 0.23
Janus-Pro-1.5B [4] 0.20 0.28 0.45 0.24 0.32 0.16 0.26
Orthus [14] 0.23 0.31 0.38 0.28 0.31 0.20 0.27
VILA-U [34] 0.26 0.33 0.37 0.35 0.39 0.23 0.31
Show-o [35] 0.28 0.40 0.48 0.30 0.46 0.30 0.35
Harmon-1.5B 0.38 0.48 0.52 0.37 0.44 0.29 0.41

Table S2. Performance on GenEval for different inference steps.

#Steps Harmon-1.5B Harmon-0.5B
64 0.76 0.71
32 0.76 0.71
16 0.74 0.69
8 0.66 0.60
4 0.47 0.44
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Figure S2. Qualitative comparison between Show-o-1.3B-512, VILA-U, Janus-Pro-1.5B and our Harmon-1.5B on text-to-image gener-
ation. The text below each image represents the generation prompt, with key terms guiding the generation highlighted in orange. Best
viewed on screen.
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Figure S3. Qualitative comparison between Show-o, VILA-U, Janus-Pro (1.5B) and our Harmon (1.5B) on text-to-image generation. The
text below each image represents the generation prompt, with key terms guiding the generation highlighted in orange. Best viewed on
screen.



Figure S4. Text-to-image generation results by Harmon-1.5B. Our model is able to generate precise and diverse images based on text
prompts.



Figure S5. Examples of multimodal image understanding in visual question-answering format. The results are obtained by Harmon-1.5B.
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