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Supplementary Material

1. Model Details
1.1. Visual Encoder

Since the original version of CLIP [I, 4] was trained on
classification tasks at the image level, it cannot be directly
applied to segmentation tasks. To address this, we syn-
thesized insights from existing methods and implemented
the following improvements (all encoders are based on the
transformer architecture):

1. Following MaskCLIP [6], we removed the average
pooling in the last layer of the CLIP visual encoder ViT,
which allows us to obtain dense features.

2. Following ClearCLIP [3], we directly removed the
feedforward neural network and residual connections from
the last layer of ViT. Additionally, we replaced the attention
mechanism in the final layer with v-v attention.

3. Inspired by the concept of multi-scale feature extrac-
tion [2], we first extracted features from different layers of
the CLIP visual encoder (specifically, the 4th, 6th, 8th, and
12th layers), concatenated them along the feature dimen-
sion, and then used convolution operations to restore the
previous dimensions. This feature was then used as input to
the decoder.

1.2. Text Encoder

To obtain class templates, we first extracted the correspond-
ing language features from multiple text descriptions con-
taining the class information and then computed the average
of the multiple features for each class. The descriptions we
used include:

* A photo of a {}.

* A snapshot of a {}.

* A bad photo of the {}.

* A clean origami {}.

* A photo of the large {}.

* A {}in a video game.

Art of the {}.

* A photo of the small {}.

A {} in the scene.

2. Analysis of Computational Cost

In the domain of Continual Learning (CL), model efficiency
is as crucial as performance. To provide a clear perspective
on the computational overhead of our proposed Language-
inspired Bootstrapped Disentanglement (LBD) method, we
conduct a comparative analysis against DenseCLIP [5], a

Table 1. Computational and performance comparison. Our LBD
method significantly outperforms DenseCLIP with only a minor
increase in computational cost. Notably, key components of LBD
are training-only and do not affect inference speed.

DenseCLIP DenseCLIP LBD

Method (Zero-shot)  (Continual-train)  (Ours) Joint
VOC 15-1 All 61.2 68.7 78.1
Params (M) 105.3 105.3 121.1
GFLOPs 143.8 143.8 148.2

strong baseline that adapts the CLIP model for dense pre-
diction tasks. This analysis is crucial for contextualizing
the performance gains documented in the main paper.

Our evaluation, summarized in Table 1, focuses on three
key metrics: performance (mloU on VOC 15-1 All), model
size (Parameters), and computational load (GFLOPs). We
assess DenseCLIP in both its zero-shot capacity and after
being continually trained on the same CISS task protocol
as our LBD. The results reveal that LBD achieves a mloU
of 78.1, substantially outperforming the continually-trained
DenseCLIP (68.7). Regarding the computational budget,
LBD exhibits only a marginal increase in complexity. The
GFLOPs increase from 143.8 to 148.2, a modest rise of ap-
proximately 3%. This slight overhead is primarily attributed
to the learnable prompts and the lightweight adapter mod-
ule. The increase in parameters from 105.3M to 121.1M
similarly reflects the inclusion of these task-specific com-
ponents.

Crucially, it is important to note that our core architec-
tural innovations, such as the Language-guided Prototypi-
cal Disentanglement (LPD) module, are designed to oper-
ate exclusively during the training phase. These compo-
nents guide the model’s feature space to form a disentangled
semantic structure but are detached for inference. Conse-
quently, they introduce no additional computational burden
at deployment time. Given the substantial performance im-
provements, especially in challenging multi-step CISS sce-
narios, we conclude that the minor increase in training com-
putation is a well-justified trade-off.

3. Exploration of PEFT

The advent of large-scale pre-trained models has spurred the
development of Parameter-Efficient Fine-Tuning (PEFT)
methods, which aim to adapt these models to downstream
tasks by updating only a small fraction of their parame-
ters. To assess the feasibility of this paradigm for Class-



Incremental Semantic Segmentation (CISS), we conducted
an ablation study investigating different PEFT strategies
within our LBD framework.

While our primary experiments configure the visual en-
coder (CLIP-ViT) as fully trainable to maximize adaptation,
integrating PEFT is indeed a feasible alternative. Our study,
presented in Table 2, explores the impact of selectively
training different components: @ the learnable prompts
introduced in Section 3.2, @ a convolution-based adapter
module placed after the encoder, and @ the full image en-
coder itself.

The results yield a clear insight: while PEFT approaches
show promise, they currently do not match the performance
of full fine-tuning for the demanding task of CISS. Train-
ing only the prompts (@) or the adapter (@) results in
mloU scores of 64.8 and 66.9, respectively. Combining
these two PEFT techniques (@+®) improves the score to
72.1. However, this is still considerably lower than the
78.1 mloU achieved when the visual encoder is fully trained
(0+0+0O).

This performance gap suggests that adapting the vision-
language model to a dense, pixel-level prediction task like
semantic segmentation requires more than just peripheral
modifications. The supervised signal from pixel-level anno-
tations appears crucial for fundamentally reshaping the fea-
tures within the visual backbone, an adaptation that cannot
be fully achieved when the encoder is frozen. We conclude
that while PEFT offers a promising avenue for reducing the
training cost of CISS, future work is needed to develop more
sophisticated methods that can bridge this performance gap.

Table 2. Ablation study on integrating PEFT methods within our
framework on Pascal VOC 15-1 All. We evaluate training differ-
ent combinations of: @ Prompts, @ Adapter, and © the full Im-
age Encoder. Full fine-tuning of the encoder remains essential for
achieving top performance.

O Prompts (Sec.3.2) @ Adapter (after encoder)
© Image Encoder (CLIP-ViT)

Trainable (1] e 00 00 006
VOC 15-1 All | 648 669 72.1 774 78.1

Reference

4. Limitations

Our method relies on explicit class names, and when only
images and numeric labels are available in the dataset, we
are unable to leverage textual information. Moreover, due
to the limitations of CLIP’s pretraining data, CLIP fails to
capture the semantic relationships between rare concepts
and other classes, thus restricting the effectiveness of our
method. Future work could focus on text supervision meth-
ods more suitable for incremental learning and cross-modal
feature interaction.
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